
CS885 Reinforcement Learning
Module 2: June 6, 2020

Maximum Entropy Reinforcement Learning

Haarnoja, Tang et al. (2017) Reinforcement Learning with Deep
Energy Based Policies, ICML.

Haarnoja, Zhou et al. (2018) Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML.

CS885 Spring 2020 Pascal Poupart 1University of Waterloo

CS885 Spring 2020 Pascal Poupart 2

Maximum Entropy RL

• Why do several implementations of important RL
baselines (e.g., A2C, PPO) add an entropy
regularizer?

• Why is maximizing entropy desirable in RL?

• What is the Soft Actor Critic algorithm?

University of Waterloo

Reinforcement Learning

Determinis)c Policies
• There always exists an

optimal deterministic policy
• Search space is smaller for

deterministic than
stochastic policies

• Practitioners prefer
deterministic policies

Stochastic Policies
• Search space is continuous

for stochastic policies (helps
with gradient descent)

• More robust (less likely to
overfit)

• Naturally incorporate
exploration

• Facilitate transfer learning
• Mitigate local optima

University of Waterloo CS885 Spring 2020 Pascal Poupart 3

Encouraging Stochasticity

Standard MDP
• States: 𝑆
• Actions: 𝐴
• Reward: 𝑅(𝑠, 𝑎)
• Transition: Pr(𝑠!|𝑠, 𝑎)
• Discount: 𝛾

Soft MDP
• States: 𝑆
• Actions: 𝐴
• Reward: 𝑅 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠
• Transition: Pr(𝑠!|𝑠, 𝑎)
• Discount: 𝛾

University of Waterloo CS885 Spring 2020 Pascal Poupart 4

CS885 Spring 2020 Pascal Poupart 5

Entropy

• Entropy: measure of uncertainty
– Information theory: expected #

of bits needed to communicate
the result of a sample

𝐻 𝑝 = −∑! 𝑝 𝑥 log 𝑝(𝑥)

University of Waterloo

𝐻(𝑝)

𝑝(𝑥)

CS885 Spring 2020 Pascal Poupart 6

OpDmal Policy

• Standard MDP

𝜋∗ = argmax
"

)
#$%

&

𝛾#𝐸'!,)!|" 𝑅 𝑠#, 𝑎#

• Soft MDP

𝜋'+,-∗ = argmax
"

)
#$%

&

𝛾#𝐸'!,)!|" 𝑅 𝑠#, 𝑎# + 𝜆𝐻 𝜋 ⋅ 𝑠#

University of Waterloo

Maximum entropy policy
Entropy regularized policy

CS885 Spring 2020 Pascal Poupart 7

Q-function

• Standard MDP

𝑄" 𝑠%, 𝑎% = 𝑅 𝑠%, 𝑎% +)
#$.

/

𝛾#𝐸'!,)!|'",)","[𝑅 𝑠#, 𝑎#]

• Soft MDP

𝑄'+,-" 𝑠%, 𝑎% = 𝑅 𝑠%, 𝑎% +)
#$.

/

𝛾#𝐸'!,)!|'",)"," 𝑅 𝑠#, 𝑎# + 𝜆𝐻 𝜋 ⋅ 𝑠#

University of Waterloo

NB: No entropy with first reward term
since action is not chosen according to 𝜋

CS885 Spring 2020 Pascal Poupart 8

Greedy Policy

• Standard MDP (deterministic policy)

𝜋'())*+(𝑠) = argmax
,

𝑄(𝑠, 𝑎)

• Soft MDP (stochastic policy)
𝜋'())*+ ⋅ 𝑠 = argmax

-
∑, 𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ./0 1 2,⋅ /6
∑0 ./0 1 2,, /6

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

when 𝜆 → 0 then 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 becomes regular max

University of Waterloo

CS885 Spring 2020 Pascal Poupart 9

Derivation

• Concave objective (can find global maximum)
𝐽(𝜋, 𝑄) = ∑, 𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ∑, 𝜋 𝑎 𝑠 [𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠]
• Partial derivative

𝜕𝐽
𝜕𝜋 𝑎 𝑠 = 𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠 + 1

• Setting the derivative to 0 and isolating 𝜋 𝑎 𝑠 yields
𝜋 𝑎 𝑠 = exp 𝑄 𝑠, 𝑎 /𝜆 − 1 ∝ exp(𝑄 𝑠, 𝑎 /𝜆)

• Hence 𝜋'())*+ ⋅ 𝑠 = ./0 1 2,⋅ /6
∑0 ./0 1 2,, /6

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

University of Waterloo

CS885 Spring 2020 Pascal Poupart 10

Greedy Value function

• What is the value function induced by the greedy policy?

• Standard MDP: 𝑉 𝑠 = max
!
𝑄(𝑠, 𝑎)

• Soft MDP:
𝑉!"#$ 𝑠 = 𝜆𝐻 𝜋%&''() ⋅ 𝑠 + ∑*𝜋%&''() 𝑎 𝑠 𝑄!"#$ 𝑠, 𝑎

= 𝜆 log∑* exp
+!"#$!,*

- =3𝑚𝑎𝑥-
*

𝑄!"#$(𝑠, 𝑎)

when 𝜆 → 0 then 3𝑚𝑎𝑥- becomes regular max

University of Waterloo

CS885 Spring 2020 Pascal Poupart 11

Derivation
𝑉#$%& 𝑠

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑, 𝜋'())*+ 𝑎 𝑠 𝑄#$%& 𝑠, 𝑎

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑, 𝜋'())*+ 𝑎 𝑠 𝜆 log 𝜋'())*+ 𝑎 𝑠 + log∑,! exp
-"#$% #,,

!

/

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆 ∑, 𝜋'())*+ 𝑎 𝑠 log 𝜋'())*+ 𝑎 𝑠 + 𝜆 log∑,! exp
-"#$% #,,

!

/

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 − 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆 log∑,! exp
-"#$% #,,

!

/

= 𝜆 log∑,! exp
-"#$% #,,

!

/

= @max/
,

𝑄#$%&(𝑠, 𝑎)

University of Waterloo

since 𝜋%&''() 𝑎 𝑠 =
*+, -"#$% .,0 /2

∑
&! *+, -"#$% .,0! /2

CS885 Spring 2020 Pascal Poupart 12

Soft Q-Value Iteration

SoftQValueIteration(MDP, 𝜆)
Initialize 𝜋% to any policy
𝑖 ← 0
Repeat
𝑄'+,-12. 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾∑'0 Pr(𝑠3|𝑠, 𝑎) ?max4

)0
𝑄'+,-1 (𝑠′, 𝑎′)

𝑖 ← 𝑖 + 1
Until 𝑄'+,-1 𝑠, 𝑎 − 𝑄'+,-15. 𝑠, 𝑎

/
≤ 𝜖

Extract policy: 𝜋67889: ⋅ 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄'+,-1 𝑠,⋅ /𝜆)

University of Waterloo

Soft Bellman equation:

𝑄'+,-∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾)
'0
Pr(𝑠3|𝑠, 𝑎) ?max4

)0
𝑄'+,-∗ (𝑠′, 𝑎′)

CS885 Spring 2020 Pascal Poupart 13

Soft Q-learning

• Q-learning based on SoL Q-Value IteraOon

• Replace expectaOons by samples

• Represent Q-funcOon by a funcOon approximator
(e.g., neural network)

• Do gradient updates based on temporal differences

University of Waterloo

CS885 Spring 2020 Pascal Poupart 14

Soft Q-learning (soft variant of DQN)

University of Waterloo

Initialize weights 𝒘 and =𝒘 at random in [−1,1]
Observe current state 𝑠
Loop

Select action 𝑎 and execute it
Receive immediate reward 𝑟
Observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠4, 𝑟) to experience buffer
Sample mini-batch of experiences from buffer
For each experience 𝑠̂, E𝑎, 𝑠̂4, 𝑟̂ in mini-batch

Gradient: 56&&
5𝒘

= 𝑄𝒘
.89: 𝑠̂, E𝑎 − 𝑟̂ − 𝛾Hmax2

;0!
𝑄<𝒘
.89:(𝑠̂′, E𝑎′) 5-𝒘

"#$% .̂, ;0
5𝒘

Update weights: 𝒘 ← 𝒘 − 𝛼 56&&
5𝒘

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: =𝒘 ← 𝒘

CS885 Spring 2020 Pascal Poupart 15

Soft Actor Critic

• In practice, actor critic techniques tend to perform
better than Q-learning.

• Can we derive a soft actor-critic algorithm?

• Yes, idea:
– Critic: soft Q-function
– Actor: (greedy) softmax policy

University of Waterloo

CS885 Spring 2020 Pascal Poupart 16

Soft Policy Iteration
SoftPolicyIteration(MDP, 𝜆)

Initialize 𝜋% to any policy
𝑖 ← 0
Repeat

Policy evaluation:
Repeat until convergence
𝑄'+,-
"1 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎

+𝛾∑'0 Pr 𝑠3 𝑠, 𝑎 ∑)0 𝜋1 𝑎′ 𝑠′ 𝑄'+,-
"1 𝑠′, 𝑎′ + 𝜆𝐻 𝜋1 ⋅ 𝑠′ ∀𝑠, 𝑎

Policy improvement:

𝜋12. 𝑎 𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄'+,-
"1 𝑠, 𝑎 /𝜆 =

;<= >2345
61 ',) /4

∑70 ;<= >2345
61 ',)0 /4

∀𝑠, 𝑎

𝑖 ← 𝑖 + 1
Until 𝑄'+,-

"1 𝑠, 𝑎 − 𝑄'+,-
"189 𝑠, 𝑎

/
≤ 𝜖

University of Waterloo

CS885 Spring 2020 Pascal Poupart 17

Policy improvement

Theorem 1: Let 𝑄LMNO
PE (𝑠, 𝑎) be the Q-function of 𝜋Q

Let 𝜋QRS 𝑎 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄LMNO
PE 𝑠, 𝑎 /𝜆

Then 𝑄LMNO
PEFG 𝑠, 𝑎 ≥ 𝑄LMNO

PE 𝑠, 𝑎 ∀𝑠, 𝑎

Proof: first show that
∑, 𝜋P 𝑎 𝑠 𝑄2QRS

-A (𝑠, 𝑎) + 𝜆𝐻 𝜋P ⋅ 𝑠
≤ ∑, 𝜋PTU 𝑎 𝑠 𝑄2QRS

-A 𝑠, 𝑎 + 𝜆𝐻(𝜋PTU ⋅ 𝑠)
then use this inequality to show that

𝑄2QRS
-ABC 𝑠, 𝑎 ≥ 𝑄2QRS

-A 𝑠, 𝑎 ∀𝑠, 𝑎

University of Waterloo

CS885 Spring 2020 Pascal Poupart 18

Inequality derivaDon
∑! 𝜋" 𝑎 𝑠 𝑄#$%&

'! (𝑠, 𝑎) + 𝜆𝐻 𝜋" ⋅ 𝑠

= ∑! 𝜋" 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 − 𝜆 log 𝜋" 𝑎 𝑠

= ∑! 𝜋" 𝑎 𝑠 [𝜆 log 𝜋"() 𝑎 𝑠 + 𝜆 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎* /𝜆) − 𝜆 log 𝜋" 𝑎 𝑠]

= 𝜆 ∑! 𝜋" 𝑎 𝑠 [log
'!#$ 𝑎 𝑠
'! 𝑎 𝑠

+ log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)]

= −𝜆𝐾𝐿(𝜋"()| 𝜋" + 𝜆 ∑! 𝜋" 𝑎 𝑠 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

≤ 𝜆 ∑! 𝜋" 𝑎 𝑠 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

= ∑! 𝜋"() 𝑎 𝑠 𝜆 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

= ∑! 𝜋"() 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 − 𝜆 log 𝜋"() 𝑠, 𝑎

= ∑! 𝜋"() 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 + 𝜆𝐻 𝜋"() ⋅ 𝑠

University of Waterloo

since 𝜋>?@ 𝑎 𝑠 =
*+, -"#$%

() .,0 /2

∑
&! *+, -"#$%

() .,0! /2

since 𝜋>?@ 𝑎 𝑠 = *+, -() .,0 /2
∑
&! *+, -() .,0! /2

CS885 Spring 2020 Pascal Poupart 19

Proof derivation

𝑄2QRS
-A 𝑠, 𝑎

= 𝑅 𝑠, 𝑎 + 𝛾𝐸2D 𝐸,D~-A 𝑄2QRS
-A 𝑠!, 𝑎! + 𝜆𝐻 𝜋P ⋅ 𝑠′

≤ 𝑅 𝑠, 𝑎 + 𝛾𝐸2D 𝐸,D~-ABC 𝑄2QRS
-A 𝑠!, 𝑎! + 𝜆𝐻 𝜋PTU ⋅ 𝑠′

≤ ⋯
≤ ⋯
≤ 𝑄2QRS

-ABC(𝑠, 𝑎)

University of Waterloo

since 𝐸0!~B) 𝑄.89:
B) 𝑠4, 𝑎4 + 𝜆𝐻 𝜋> ⋅ 𝑠′

≤ 𝐸0!~B)*+ 𝑄.89:
B) 𝑠4, 𝑎4 + 𝜆𝐻 𝜋>?@ ⋅ 𝑠′

repeatedly apply
QCDEF
B, (s′, a′) ≤ 𝑅 𝑠′, 𝑎′ + 𝛾𝐸.!! 𝐸0!!~B)*+ 𝑄.89:

B) 𝑠44, 𝑎44 + 𝜆𝐻 𝜋>?@ ⋅ 𝑠′′

CS885 Spring 2020 Pascal Poupart 20

Convergence to Optimal 𝑄,-./∗ and 𝜋,-./∗

• Theorem 2: When 𝜖 = 0, soft policy iteration converges to
optimal 𝑄2QRS∗ and 𝜋2QRS∗ .

• Proof:
– We know that 𝑄"1:9 𝑠, 𝑎 ≥ 𝑄"1 𝑠, 𝑎 ∀𝑠, 𝑎 according to Theorem 1
– Since the Q-functions are upper bounded by

(max
',)

𝑅 𝑠, 𝑎 + 𝐻 𝑢𝑛𝑖𝑓𝑜𝑟𝑚)/(1 − 𝛾)

then soft policy iteration converges
– At convergence, 𝑄"189 = 𝑄"1 and therefore the Q-function satisfies

Bellman’s equation:

𝑄.89:
B)-+ 𝑠, 𝑎 = 𝑄.89:

B) 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾_
.!
Pr(𝑠4|𝑠, 𝑎)Hmax2

0!
𝑄.89:
B)-+(𝑠′, 𝑎′)

University of Waterloo

CS885 Spring 2020 Pascal Poupart 21

Soft Actor-Critic

• RL version of soft policy iteration
• Use neural networks to represent policy and value

function
• At each policy improvement step, project new policy

in the space of parameterized neural nets

University of Waterloo

CS885 Spring 2020 Pascal Poupart 22

Soft Actor Critic (SAC)

University of Waterloo

Initialize weights 𝒘, I𝒘, 𝜃 at random in [−1,1]
Observe current state 𝑠
Loop

Sample action 𝑎~𝜋;(⋅ |𝑠) and execute it
Receive immediate reward 𝑟
Observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠<, 𝑟) to experience buffer
Sample mini-batch of experiences from buffer
For each experience 𝑠̂, S𝑎, 𝑠̂<, 𝑟̂ in mini-batch

Sample S𝑎′~𝜋;(⋅ |𝑠̂′)

Gradient: =>((
=𝒘

= 𝑄𝒘
#$%& 𝑠̂, S𝑎 − 𝑟̂ − 𝛾[Q @𝐰

#$%& 𝑠̂<, S𝑎< + 𝜆𝐻 𝜋; ⋅ 𝑠̂<) =-𝒘
"#$% #̂, C,
=𝒘

Update weights: 𝒘 ← 𝒘 − 𝛼 =>((
=𝒘

Update policy: 𝜃 ← 𝜃 − 𝛼
=DE 𝜋; 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄@F

#$%&/𝜆
=;

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: I𝒘 ← 𝒘

CS885 Spring 2020 Pascal Poupart 23

Empirical Results
• Comparison on several robotics tasks

University of Waterloo

From Haarnoja, Zhou et al. (2018)

CS885 Spring 2020 Pascal Poupart 24

Robustness to Environment Changes

University of Waterloo

https://youtu.be/KOObeIjzXTY

Check out this video

Using Soft Actor Critic (SAC),
Minotaur learns to walk quickly
and to generalize to environments
with challenges that it was
not trained to deal with!

https://youtu.be/KOObeIjzXTY

