
CS885 Reinforcement Learning
Module 2: June 6, 2020

Maximum Entropy Reinforcement Learning

Haarnoja, Tang et al. (2017) Reinforcement Learning with Deep 
Energy Based Policies, ICML.

Haarnoja, Zhou et al. (2018) Soft Actor-Critic: Off-Policy Maximum 
Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML.  
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Maximum Entropy RL

• Why do several implementations of important RL 
baselines (e.g., A2C, PPO) add an entropy 
regularizer?

• Why is maximizing entropy desirable in RL?

• What is the Soft Actor Critic algorithm?

University of Waterloo



Reinforcement Learning

Determinis)c Policies
• There always exists an 

optimal deterministic policy
• Search space is smaller for 

deterministic than 
stochastic policies

• Practitioners prefer 
deterministic policies

Stochastic Policies
• Search space is continuous 

for stochastic policies (helps 
with gradient descent)

• More robust (less likely to 
overfit)

• Naturally incorporate 
exploration

• Facilitate transfer learning
• Mitigate local optima
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Encouraging Stochasticity

Standard MDP
• States: 𝑆
• Actions: 𝐴
• Reward: 𝑅(𝑠, 𝑎)
• Transition: Pr(𝑠!|𝑠, 𝑎)
• Discount: 𝛾

Soft MDP
• States: 𝑆
• Actions: 𝐴
• Reward: 𝑅 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠
• Transition: Pr(𝑠!|𝑠, 𝑎)
• Discount: 𝛾
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Entropy

• Entropy: measure of uncertainty 
– Information theory: expected # 

of bits needed to communicate 
the result of a sample

𝐻 𝑝 = −∑! 𝑝 𝑥 log 𝑝(𝑥)

University of Waterloo

𝐻(𝑝)

𝑝(𝑥)
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OpDmal Policy

• Standard MDP

𝜋∗ = argmax
"

)
#$%

&

𝛾#𝐸'!,)!|" 𝑅 𝑠#, 𝑎#

• Soft MDP

𝜋'+,-∗ = argmax
"

)
#$%

&

𝛾#𝐸'!,)!|" 𝑅 𝑠#, 𝑎# + 𝜆𝐻 𝜋 ⋅ 𝑠#

University of Waterloo

Maximum entropy policy
Entropy regularized policy
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Q-function

• Standard MDP

𝑄" 𝑠%, 𝑎% = 𝑅 𝑠%, 𝑎% +)
#$.

/

𝛾#𝐸'!,)!|'",)","[𝑅 𝑠#, 𝑎# ]

• Soft MDP

𝑄'+,-" 𝑠%, 𝑎% = 𝑅 𝑠%, 𝑎% +)
#$.

/

𝛾#𝐸'!,)!|'",)"," 𝑅 𝑠#, 𝑎# + 𝜆𝐻 𝜋 ⋅ 𝑠#

University of Waterloo

NB: No entropy with first reward term 
since action is not chosen according to 𝜋
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Greedy Policy

• Standard MDP (deterministic policy)

𝜋'())*+(𝑠) = argmax
,

𝑄(𝑠, 𝑎)

• Soft MDP (stochastic policy)
𝜋'())*+ ⋅ 𝑠 = argmax

-
∑, 𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ./0 1 2,⋅ /6
∑0 ./0 1 2,, /6

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

when 𝜆 → 0 then 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 becomes regular max

University of Waterloo
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Derivation

• Concave objective (can find global maximum) 
𝐽(𝜋, 𝑄) = ∑, 𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ∑, 𝜋 𝑎 𝑠 [𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠 ]
• Partial derivative

𝜕𝐽
𝜕𝜋 𝑎 𝑠 = 𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠 + 1

• Setting the derivative to 0 and isolating 𝜋 𝑎 𝑠 yields
𝜋 𝑎 𝑠 = exp 𝑄 𝑠, 𝑎 /𝜆 − 1 ∝ exp(𝑄 𝑠, 𝑎 /𝜆)

• Hence 𝜋'())*+ ⋅ 𝑠 = ./0 1 2,⋅ /6
∑0 ./0 1 2,, /6

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

University of Waterloo
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Greedy Value function

• What is the value function induced by the greedy policy?

• Standard MDP:  𝑉 𝑠 = max
!
𝑄(𝑠, 𝑎)

• Soft MDP:
𝑉!"#$ 𝑠 = 𝜆𝐻 𝜋%&''() ⋅ 𝑠 + ∑*𝜋%&''() 𝑎 𝑠 𝑄!"#$ 𝑠, 𝑎

= 𝜆 log∑* exp
+!"#$ !,*

- =3𝑚𝑎𝑥-
*

𝑄!"#$(𝑠, 𝑎)

when 𝜆 → 0 then 3𝑚𝑎𝑥- becomes regular max

University of Waterloo
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Derivation
𝑉#$%& 𝑠

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑, 𝜋'())*+ 𝑎 𝑠 𝑄#$%& 𝑠, 𝑎

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑, 𝜋'())*+ 𝑎 𝑠 𝜆 log 𝜋'())*+ 𝑎 𝑠 + log∑,! exp
-"#$% #,,

!

/

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆 ∑, 𝜋'())*+ 𝑎 𝑠 log 𝜋'())*+ 𝑎 𝑠 + 𝜆 log∑,! exp
-"#$% #,,

!

/

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 − 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆 log∑,! exp
-"#$% #,,

!

/

= 𝜆 log∑,! exp
-"#$% #,,

!

/

= @max/
,

𝑄#$%&(𝑠, 𝑎)

University of Waterloo

since 𝜋%&''() 𝑎 𝑠 =
*+, -"#$% .,0 /2

∑
&! *+, -"#$% .,0! /2



CS885 Spring 2020 Pascal Poupart 12

Soft Q-Value Iteration

SoftQValueIteration(MDP, 𝜆)
Initialize 𝜋% to any policy
𝑖 ← 0
Repeat 
𝑄'+,-12. 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾∑'0 Pr(𝑠3|𝑠, 𝑎) ?max4

)0
𝑄'+,-1 (𝑠′, 𝑎′)

𝑖 ← 𝑖 + 1
Until 𝑄'+,-1 𝑠, 𝑎 − 𝑄'+,-15. 𝑠, 𝑎

/
≤ 𝜖

Extract policy: 𝜋67889: ⋅ 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄'+,-1 𝑠,⋅ /𝜆)

University of Waterloo

Soft Bellman equation:

𝑄'+,-∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾)
'0
Pr(𝑠3|𝑠, 𝑎) ?max4

)0
𝑄'+,-∗ (𝑠′, 𝑎′)
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Soft Q-learning

• Q-learning based on SoL Q-Value IteraOon

• Replace expectaOons by samples

• Represent Q-funcOon by a funcOon approximator 
(e.g., neural network)

• Do gradient updates based on temporal differences

University of Waterloo
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Soft Q-learning (soft variant of DQN)

University of Waterloo

Initialize weights 𝒘 and =𝒘 at random in [−1,1]
Observe current state 𝑠
Loop

Select action 𝑎 and execute it
Receive immediate reward 𝑟
Observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠4, 𝑟) to experience buffer 
Sample mini-batch of experiences from buffer
For each experience 𝑠̂, E𝑎, 𝑠̂4, 𝑟̂ in mini-batch

Gradient: 56&&
5𝒘

= 𝑄𝒘
.89: 𝑠̂, E𝑎 − 𝑟̂ − 𝛾Hmax2

;0!
𝑄<𝒘
.89:(𝑠̂′, E𝑎′) 5-𝒘

"#$% .̂, ;0
5𝒘

Update weights: 𝒘 ← 𝒘 − 𝛼 56&&
5𝒘

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: =𝒘 ← 𝒘
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Soft Actor Critic

• In practice, actor critic techniques tend to perform 
better than Q-learning.  

• Can we derive a soft actor-critic algorithm?

• Yes, idea:
– Critic: soft Q-function
– Actor: (greedy) softmax policy

University of Waterloo
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Soft Policy Iteration
SoftPolicyIteration(MDP, 𝜆)

Initialize 𝜋% to any policy
𝑖 ← 0
Repeat 

Policy evaluation:
Repeat until convergence
𝑄'+,-
"1 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎

+𝛾∑'0 Pr 𝑠3 𝑠, 𝑎 ∑)0 𝜋1 𝑎′ 𝑠′ 𝑄'+,-
"1 𝑠′, 𝑎′ + 𝜆𝐻 𝜋1 ⋅ 𝑠′ ∀𝑠, 𝑎

Policy improvement:

𝜋12. 𝑎 𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄'+,-
"1 𝑠, 𝑎 /𝜆 =

;<= >2345
61 ',) /4

∑70 ;<= >2345
61 ',)0 /4

∀𝑠, 𝑎

𝑖 ← 𝑖 + 1
Until 𝑄'+,-

"1 𝑠, 𝑎 − 𝑄'+,-
"189 𝑠, 𝑎

/
≤ 𝜖

University of Waterloo
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Policy improvement

Theorem 1: Let 𝑄LMNO
PE (𝑠, 𝑎) be the Q-function of 𝜋Q

Let 𝜋QRS 𝑎 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄LMNO
PE 𝑠, 𝑎 /𝜆

Then 𝑄LMNO
PEFG 𝑠, 𝑎 ≥ 𝑄LMNO

PE 𝑠, 𝑎 ∀𝑠, 𝑎

Proof: first show that 
∑, 𝜋P 𝑎 𝑠 𝑄2QRS

-A (𝑠, 𝑎) + 𝜆𝐻 𝜋P ⋅ 𝑠
≤ ∑, 𝜋PTU 𝑎 𝑠 𝑄2QRS

-A 𝑠, 𝑎 + 𝜆𝐻(𝜋PTU ⋅ 𝑠 )
then use this inequality to show that 

𝑄2QRS
-ABC 𝑠, 𝑎 ≥ 𝑄2QRS

-A 𝑠, 𝑎 ∀𝑠, 𝑎

University of Waterloo
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Inequality derivaDon
∑! 𝜋" 𝑎 𝑠 𝑄#$%&

'! (𝑠, 𝑎) + 𝜆𝐻 𝜋" ⋅ 𝑠

= ∑! 𝜋" 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 − 𝜆 log 𝜋" 𝑎 𝑠

= ∑! 𝜋" 𝑎 𝑠 [ 𝜆 log 𝜋"() 𝑎 𝑠 + 𝜆 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎* /𝜆) − 𝜆 log 𝜋" 𝑎 𝑠 ]

= 𝜆 ∑! 𝜋" 𝑎 𝑠 [ log
'!#$ 𝑎 𝑠
'! 𝑎 𝑠

+ log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)]

= −𝜆𝐾𝐿(𝜋"()| 𝜋" + 𝜆 ∑! 𝜋" 𝑎 𝑠 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

≤ 𝜆 ∑! 𝜋" 𝑎 𝑠 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

= ∑! 𝜋"() 𝑎 𝑠 𝜆 log ∑!" exp(𝑄#$%&
'! 𝑠, 𝑎′ /𝜆)

= ∑! 𝜋"() 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 − 𝜆 log 𝜋"() 𝑠, 𝑎

= ∑! 𝜋"() 𝑎 𝑠 𝑄#$%&
'! 𝑠, 𝑎 + 𝜆𝐻 𝜋"() ⋅ 𝑠

University of Waterloo

since 𝜋>?@ 𝑎 𝑠 =
*+, -"#$%

() .,0 /2

∑
&! *+, -"#$%

() .,0! /2

since 𝜋>?@ 𝑎 𝑠 = *+, -() .,0 /2
∑
&! *+, -() .,0! /2
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Proof derivation

𝑄2QRS
-A 𝑠, 𝑎

= 𝑅 𝑠, 𝑎 + 𝛾𝐸2D 𝐸,D~-A 𝑄2QRS
-A 𝑠!, 𝑎! + 𝜆𝐻 𝜋P ⋅ 𝑠′

≤ 𝑅 𝑠, 𝑎 + 𝛾𝐸2D 𝐸,D~-ABC 𝑄2QRS
-A 𝑠!, 𝑎! + 𝜆𝐻 𝜋PTU ⋅ 𝑠′

≤ ⋯
≤ ⋯
≤ 𝑄2QRS

-ABC(𝑠, 𝑎)

University of Waterloo

since 𝐸0!~B) 𝑄.89:
B) 𝑠4, 𝑎4 + 𝜆𝐻 𝜋> ⋅ 𝑠′

≤ 𝐸0!~B)*+ 𝑄.89:
B) 𝑠4, 𝑎4 + 𝜆𝐻 𝜋>?@ ⋅ 𝑠′

repeatedly apply 
QCDEF
B, (s′, a′) ≤ 𝑅 𝑠′, 𝑎′ + 𝛾𝐸.!! 𝐸0!!~B)*+ 𝑄.89:

B) 𝑠44, 𝑎44 + 𝜆𝐻 𝜋>?@ ⋅ 𝑠′′
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Convergence to Optimal 𝑄,-./∗ and 𝜋,-./∗

• Theorem 2: When 𝜖 = 0, soft policy iteration converges to 
optimal 𝑄2QRS∗ and 𝜋2QRS∗ .

• Proof:
– We know that 𝑄"1:9 𝑠, 𝑎 ≥ 𝑄"1 𝑠, 𝑎 ∀𝑠, 𝑎 according to Theorem 1
– Since the Q-functions are upper bounded by 

(max
',)

𝑅 𝑠, 𝑎 + 𝐻 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 )/(1 − 𝛾)

then soft policy iteration converges
– At convergence, 𝑄"189 = 𝑄"1 and therefore the Q-function satisfies 

Bellman’s equation: 

𝑄.89:
B)-+ 𝑠, 𝑎 = 𝑄.89:

B) 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾_
.!
Pr(𝑠4|𝑠, 𝑎)Hmax2

0!
𝑄.89:
B)-+(𝑠′, 𝑎′)

University of Waterloo
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Soft Actor-Critic

• RL version of soft policy iteration
• Use neural networks to represent policy and value 

function
• At each policy improvement step, project new policy 

in the space of parameterized neural nets

University of Waterloo
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Soft Actor Critic (SAC)

University of Waterloo

Initialize weights 𝒘, I𝒘, 𝜃 at random in [−1,1]
Observe current state 𝑠
Loop

Sample action 𝑎~𝜋;(⋅ |𝑠) and execute it
Receive immediate reward 𝑟
Observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠<, 𝑟) to experience buffer 
Sample mini-batch of experiences from buffer
For each experience 𝑠̂, S𝑎, 𝑠̂<, 𝑟̂ in mini-batch

Sample S𝑎′~𝜋;(⋅ |𝑠̂′)

Gradient: =>((
=𝒘

= 𝑄𝒘
#$%& 𝑠̂, S𝑎 − 𝑟̂ − 𝛾[Q @𝐰

#$%& 𝑠̂<, S𝑎< + 𝜆𝐻 𝜋; ⋅ 𝑠̂< ) =-𝒘
"#$% #̂, C,
=𝒘

Update weights: 𝒘 ← 𝒘 − 𝛼 =>((
=𝒘

Update policy: 𝜃 ← 𝜃 − 𝛼
=DE 𝜋; 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄@F

#$%&/𝜆
=;

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: I𝒘 ← 𝒘
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Empirical Results
• Comparison on several robotics tasks

University of Waterloo

From Haarnoja, Zhou et al. (2018)
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Robustness to Environment Changes

University of Waterloo

https://youtu.be/KOObeIjzXTY

Check out this video

Using Soft Actor Critic (SAC), 
Minotaur learns to walk quickly 
and to generalize to environments 
with challenges that it was 
not trained to deal with!

https://youtu.be/KOObeIjzXTY

