
CS885 Reinforcement Learning
Lecture 4b: May 11, 2018

Deep Q-networks
[SutBar] Sec. 9.4, 9.7,

[Sze] Sec. 4.3.2

CS885 Spring 2018 Pascal Poupart 1University of Waterloo

CS885 Spring 2018 Pascal Poupart 2

Outline

• Value Function Approximation
– Linear approximation
– Neural network approximation

• Deep Q-network

University of Waterloo

CS885 Spring 2018 Pascal Poupart 3

Q-function Approximation

• Let ! = #$, #&, … , #()

• Linear
* !, + ≈ ∑. /0.#.

• Non-linear (e.g., neural network)
* !, + ≈ 1(3;5)

University of Waterloo

CS885 Spring 2018 Pascal Poupart 4

Gradient Q-learning

• Minimize squared error between Q-value estimate
and target
– Q-value estimate: !"($, &)
– Target: (+ *max

./
!0"($1, &1)

• Squared error:

2(((") = 4
5 [!" $, & − (− *max

./
!0" $1, &1]5

• Gradient
9:;;
9" = !" $, & − (− *max

./
!0" $1, &1 9<" =,.

9"

0" fixed

University of Waterloo

CS885 Spring 2018 Pascal Poupart 5

Gradient Q-learning

Initialize weights ! uniformly at random in [−1,1]
Observe current state '
Loop

Select action (and execute it

Receive immediate reward)
Observe new state '’
Gradient:

+,--
+! = /! ', (−) − 0max

45
/! '6, (6 +7! 8,4

+!

Update weights: ! ← !− : +,--
+!

Update state: ' ← '’

University of Waterloo

CS885 Spring 2018 Pascal Poupart 6

Recap: Convergence of
Tabular Q-learning

• Tabular Q-Learning converges to optimal Q-function
under the following conditions:

∑"#$% &" = ∞ and ∑"#$% &") < ∞

• Let &" +, - = 1/0(+, -)
– Where 0(+, -) is # of times that (+, -) is visited

• Q-learning
3 +, - ← 3 +, - + &"(+, -)[7 + 8max<=

3 +>, -> − 3(+, -)]

University of Waterloo

CS885 Spring 2018 Pascal Poupart 7

Convergence of
Linear Gradient Q-Learning

• Linear Q-Learning converges under the same
conditions:

∑"#$% &" = ∞ and ∑"#$% &") < ∞

• Let &" = 1/-
• Let ./ 0, 2 = ∑3 4353
• Q-learning

/ ← /− &" ./ 0, 2 − 8 − 9max
=>

./ 0?, 2? @A/ B,=
@/

University of Waterloo

CS885 Spring 2018 Pascal Poupart 8

Divergence of
Non-linear Gradient Q-learning

• Even when the following conditions hold
∑"#$% &" = ∞ and ∑"#$% &") < ∞

non-linear Q-learning may diverge

• Intuition:
– Adjusting + to increase , at (., 0)might introduce errors

at nearby state-action pairs.

University of Waterloo

CS885 Spring 2018 Pascal Poupart 9

Mitigating divergence

• Two tricks are often used in practice:

1. Experience replay
2. Use two networks:

– Q-network
– Target network

University of Waterloo

CS885 Spring 2018 Pascal Poupart 10

Experience Replay

• Idea: store previous experiences (", $, "’, &) into a
buffer and sample a mini-batch of previous
experiences at each step to learn by Q-learning

• Advantages
– Break correlations between successive updates (more

stable learning)

– Fewer interactions with environment needed to converge
(greater data efficiency)

University of Waterloo

CS885 Spring 2018 Pascal Poupart 11

Target Network

• Idea: Use a separate target network that is updated
only periodically

repeat for each !, #, !$, % in mini-batch:
& ← &−)* +& !, # − % − ,max

01
+2& !$, #$ 3+& !, #

3&
2& ← &

• Advantage: mitigate divergence

targetupdate

University of Waterloo

CS885 Spring 2018 Pascal Poupart 12

Target Network

• Similar to value iteration:
repeat for all !
" ! ← max' (! + *∑,- Pr !0 !, 2 3"(!0) ∀!

3" ← "

repeat for each !, 2, !0, 7 in mini-batch:
8 ← 8− :; <8 !, 2 − 7 − *max

'-
<=8 !0, 20 ><8 !, 2

>8
=8 ← 8

targetupdate

targetupdate
University of Waterloo

CS885 Spring 2018 Pascal Poupart 13

Deep Q-network

• Google Deep Mind:

• Deep Q-network: Gradient Q-learning with
– Deep neural networks

– Experience replay

– Target network

• Breakthrough: human-level play in many Atari
video games

University of Waterloo

CS885 Spring 2018 Pascal Poupart 14

Deep Q-network
Initialize weights ! and "! at random in [−1,1]
Observe current state (
Loop

Select action) and execute it
Receive immediate reward *
Observe new state (’
Add ((,), (-, *) to experience buffer
Sample mini-batch of experiences from buffer
For each experience (̂, 0), (̂-, *̂ in mini-batch

Gradient: 12331! = 5! (̂, 0) − *̂ − 6max
0:;

Q "= (̂-, 0)- 1>! ?̂, 0:
1!

Update weights: ! ← !− A 1233
1!

Update state: (← (’
Every B steps, update target: "! ← !

University of Waterloo

CS885 Spring 2018 Pascal Poupart 15

Deep Q-Network for Atari

University of Waterloo

CS885 Spring 2018 Pascal Poupart 16

DQN versus Linear approx.

University of Waterloo

