End-to-end LSTM-based dialog control optimized with
supervised and reinforcement learning

Authors: Jason D. Williams and Geoffrey Zweig

Speaker: Hamidreza Shahidi




Outline

Introduction

Model description

Optimizing with supervised learning
Optimizing with reinforcement learning
Conclusion



Task-oriented dialogue systems

A dialog system for:

e |Initiating phone calls to a contact in an address book

How can | help you?

Call Jason

Which type of phone: mobile or work?
Oh, actually call Mike on his office phone
Calling Michael Seltzer, work.
PlaceCall

e Ordering a taxi
e Reserving a table at a restaurant
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Reinforcement learning Setting

State = (user’s goal, dialogue history)

Text actions — “Do you want to call <name>?"

Actions =

API calls — PlacePhoneCall(<name>)

Reward = 1 for successfully completing the task, and 0 otherwise
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Model description
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User Input

> call Jason williams —
office or cellphone? <

>

Text

API call

Action
Mask

Action

a
w

Renormal-

ization

Sample
action



Entity Extraction

For example: identifying “Jason Williams” as a <name> entity
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Entity Input

For example: Maps from the text “Jason Williams” to a specific row in a database
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Feature Vector
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Recurrent Neural Network

LSTM neural network is used because it has the ability to remember past observations

arbitrarily long.
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Action Mask

If a target phone number has not yet been identified, the API action to place a phone

call may be masked.
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Re-normalization

Pr{masked actions} = 0 —— Re-normalize into a probability distribution

> call Jason williams =
Office or cellphone? <

b

Actior
Mask

l Renormal-
ization

Sample

" action



Sample Action

RL: sample from the distribution
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Entity Output
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Taking Action
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Training the Model

I Hit or - i
brcinln;““d the 15-day minimum initial

2- Introduce the team to your business
3 Stress the significance of schedule adherence

4. Emphasize the importance of etiquette and
customer relationships

5. Encourage resourcefulness




Optimizing with supervised learning
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The current model is run
on unlabeled instances.

The model is rebuilt.

Active Learning

e

The unlabeled instances for which the model is most uncertain are labeled.



Active learning

e For active learning to be effective, the scores output by the model must be a

good indicator of correctness.
e 80% of the actions with the lowest scores are incorrect.

e Re-training the LSTM is fast

- Labeling low scoring actions will rapidly improve the performance.



Optimizing with reinforcement learning




Policy gradient
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Conclusion

1. This paper has taken a first step toward an end-to-end learning for
task-oriented dialog systems.

2. The LSTM automatically extracts a representation of the dialogue state (no
hand-crafting).

3. Code provided by the developer can enforce business rules on the policy.

4. The model is trained using both SL & RL.
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