FeUdal Networks for Hierarchical Reinforcement Learning

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, Koray Kavukcuoglu: DeepMind

Rene Bidart (rbbidart@uwaterloo.ca)
CS885
June 22, 2018
Why do we care about HRL?

Reinforcement Learning is hard!

- Long time horizons and sparse rewards are problematic for current methods
- Many of the methods we use are not intuitively appealing
- Look to human decision process for inspiration
Hierarchies

How do we make decisions?

- If we are hungry, do we reason in terms of small muscle movements?
- To play the guitar, do we randomly jitter our fingers until we play a song?

No, we reason using hierarchies of abstraction.

- We already use conv nets to learn hierarchical structure in images. Why not use hierarchical structure in policies?
Feudalism

- Governance system in Europe in middle ages
- Extremely hierarchical, based on ownership of property
- Higher level people have control over the lower levels, but not over people many layers lower
Feudal RL (1993)

Reward Hiding:

- Managers reward sub-managers for satisfying their commands, not through an external reward
- Managers have absolute control

Information Hiding

- Observe world at different resolutions
- Managers don’t know what happens at other levels of the hierarchy
Feudal RL (1993)

- Q-learning
- Used to solve a simple maze task
- Didn’t generate good results on more complex or less obviously hierarchical problems
FeUdal Networks (2017): Overview

Manager

- Sets directional goals for the worker
- Rewarded by environment
- Does not directly act in environment

Worker

- Higher temporal resolution
- Reward for achieving manager’s goals
- Produces primitive actions in environment
FeUdal Networks (2017): Overview

Architecture

- Both worker and manager share a state embedding
- Both worker and manager use RNNs

Goals

- Manager produces directional goals for worker in latent space
- Trained using novel transition policy gradient
FeUdal Network: Details
FeUdal Network

Shared Dense Embedding

- Embedding of input state
- Used by both worker and manager to produce goal and action
- CNN
 - 16 8x8 filters
 - 32 4x4 filters
 - 256 fully connected
 - ReLU
FeUdal Network

Manager: Goal embedding

- Lower Temporal Resolution, goals summed over last 10 time steps
- Uses dilated LSTM
- Goal is in low-dimensional space, not environment
- Trained using transition policy gradient
FeUdal Network

Worker: Action Embedding

- LSTM on shared embedding
- Embedding U matrix:
 - Rows: actions \([a]\)
 - Columns: embedding dimension \([k]\)
FeUdal Network

Goal embedding: Worker

- Compress manager’s goal to dim k using linear transformation - ϕ

- Same dim as action embedding

- Linear transformation with no bias
 - Can’t produce a 0 vector
 - Can’t ignore the manager’s input, so manager’s goal will influence final policy
FeUdal Network

Action: Worker

- Product of action embedding matrix (U) with goal embedding (w)
- Produces a distribution over actions
- \textbf{Action} = \text{softmax}(U^*w)
Training Manager: Transition Policy Gradient

- Worker’s goal is directional, rather than absolute
- Instead of increasing the probability of an action, we shift the direction of the goal

Actor-critic:

\[\nabla g_t = A_t^M \nabla \theta d_{\cos}(s_{t+c} - s_t, g_t(\theta)) \]

Value function from internal critic:

\[A_t^M = R_t - V_t^M(x_t, \theta) \]
Training: Worker’s Intrinsic Reward

- Intrinsic reward is based on if the worker follows the correct direction

\[r^I_t = \frac{1}{c} \sum_{i=1}^{c} d_{\text{cos}}(s_t - s_{t-i}, g_{t-i}) \]
Training: Worker’s Intrinsic Reward

Actor-Critic:

$$\nabla \pi_t = A_t^D \nabla_\theta \log \pi(a_t|x_t; \theta)$$

Reward isn’t truly hierarchical

- They use weighted sum of intrinsic reward, and environment reward

$$A_t^D = (R_t + \alpha R_t^I - V_t^D(x_t; \theta))$$
Why directional goals?

Feasibility

- Worker can more easily cause directional shifts, rather than reaching a new location in state space

Structural Generalization

- A single sub goal (direction) can be useful in many different locations in the state space
More Details: Dilated LSTM

- Better able to preserve memories over long periods
- Output is summed over previous 10 steps
- Specific type of Dilated RNN

Dilated RNN [Chang et al. 2017]:

![Dilated RNN Diagram]
Results: Atari

- Outperforms LSTM baseline whenever there are more delayed rewards
Results: Water Maze

- Circular space with invisible goal, agent must find goal
- Next episode put in a random location, and agent must find goal again
- Left are individual episodes, right visualizes the sub-policies
- Agent learns meaningful sub-goals
Results: Temporal Resolution Ablations

- Removing dilations from the LSTM or using full temporal time scale for manager is significantly worse.
Results: Intrinsic Reward Ablations

- Using only intrinsic reward at right
- Environment reward is not necessary for good performance
Results: Atari Action Repeat Transfer

- One of the goals of HRL was better transfer learning
- Transfer learning with different number of action repeats
- Manager’s policy does not depend on how the worker achieves these goals
Summary

- Directional rather than absolute goals are useful
- Dilated LSTM is crucial for high performance
- Improves long-term credit assignment over baselines
- Improves transfer across different action repeats
- Manager’s goals are meaningful low-level behaviors from the worker
Thoughts

- Ablation studies were crucial to get a better idea what is going on - something missing in a lot of DL papers.

- Why does worker produce goal and action embedding, rather than just feeding it into a fully connected network?
Questions?