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Introduction



Doom, the video game
Make an agent that can play 
deathmatch games in Doom

The input is the 60x108 
colour screen

The agents actions are: turn 
{left, right}, walk forward, 
shoot, etc, (a subset of what 
the game provides)



Doom Details
The game is early 3D and automatically compensates for aiming differences in 
elevation.  So only left and right are necessary.

In the ‘deathmatch’ game each agent tries to maximise their number of kills vs 
their number of deaths.

The agent can pick up health or ammunition throughout the level.



Proposed Agent (Simplified)
A deep neural network that is a Long Short Term Memory cell on top of a 
Convolutional Neural Net.

The intuition is that the CNN can process the raw image data and produce some 
higher level information that the LSTM can do something with.



The Proposed Solution



Deep Recurrent Q Networks (DRQN)
Instead of estimating Q(ot, at), we want Q(ot, ht-1, at).  Where ht-1 is some other 
output of our function at the previous timestep.

This is implemented as: 

ht = LSTM(ht-1, ot)

We estimate our Q as Q(ht, at)



Network Structure



Notes on Network Structure
Layer 3’ is layer 3 flattened

Each convolution has a third input dimension that is the number of feature maps in 
the previous layer

The size of the LSTM hidden state is never specified

The entire structure seems to be strongly based on their citation of Hausknecht 
and Stone (2015): https://arxiv.org/abs/1507.06527

This source also talks about screen flicker in games which was covered in this 
course.

https://arxiv.org/abs/1507.06527


Game feature augmentation
To improve training the network is not only trained reinforcement-wise using the 
reward function.

During training the network is also trained to extract features about the world that 
their game engine provides: is there an enemy on the screen?  Am I out of 
ammunition?

These are the size-k game features in the network.

This way the CNN is jointly trained, and the authors theorise this helps it extract 
information about the current frame.



Navigation Network
Two separately trained networks were used for the agent.  Identical structure, but 
the navigation network could only move.

Swapping between the Navigation network and Action network was determined by 
the presence of enemies on the screen, an output that was trained from a game 
feature.

This network was easier to train and encouraged searching for health and ammo 
instead of ‘camping’.



Training
Reward shaping:  Positive for picking up items, negative for losing health, negative 
for shooting, positive for distance traveled since last step (prevents turning in 
circles)

The navigation network was at times trained on a map without enemies just so it 
would learn to efficiently pick up items.

Frame skip:  only each kth frame is considered and the action decided is repeated 
(equivalent to key held down) for the next k frames.  In the paper they decide on 
considering every 5th frame.



Training Details
Used RMSProp algorithm

Replay memory of 1 million most recent frames

Minibatch size of 32

Epsilon greedy starting at 1 going to 0.1 over 
the first million frames

Discount factor of 0.99

Only experiences with enough history are 
backpropagated



Evaluation



Scenarios

Only weapon is rocket launcher that all agents 
start with

Single known map

Limited deathmatch on a known map

All agents start with pistol and must pick up 
other weapons

10 maps for training, 3 maps for testing

Full deathmatch on unknown maps



Opponents
The opponents used in this paper were mostly the built-in doom ‘bots’

20 human players were also used to evaluate the agent.  As best I can figure out 
these were university volunteers, definitely not professionals.

Single player scenario is both humans and the 
agent playing against bots in separate games. 

Multiplayer scenario is agent and human 
playing against each other in the same game.



Conclusions



Contributions
Another game humans are worse at!

Demonstrating the usefulness of truths (game features) in training rather than pure 
experience.  And on a related note, the effectiveness of jointly training one 
network on multiple objectives.

Future Work
This paper expands a 2D game playing LSTM model to 3D.

This can be further extended to other 3D games or 3D environments.



My opinions
The use of separate Navigation and Action networks controlled by some pre-set 
(non-learned) criteria seems to indicate that the model used isn’t expressive 
enough.  It can also be cheated if the players are aware of this weakness, for 
example the agent can’t fire a rocket if it expects an opponent to come around a 
corner before it has seen them.

Knowing how much hidden state the LSTM has is necessary to replicate the work.

A paper demonstrating exactly what we learned in class, seriously go look at the 
slides for 12: Deep recurrent Q-networks.  Hausknecht and Stone (2016) cited in 
the notes are the same authors as Hausknecht and Stone (2015) cited by this 
paper.



Questions


