Lecture 7: Offline RL CS885 Reinforcement Learning

2022-10-03

Complementary readings:

Levine, Kumar, Tucker, Fu (2021) Offline reinforcement learning: Tutorial, review, and perspectives on open problems, *arxiv*. Kumar, Zhou, Tucker, Levine (2020) Conservative Q-Learning for Offline Reinforcement Learning, *NeurIPS*.

Pascal Poupart David R. Cheriton School of Computer Science

- Can we optimize a policy without interacting with the environment (i.e., learn from previously saved data)?
- Offline RL (also known as batch RL)
 - Conservative Q-Learning
 - Conservative Soft Q-learning
 - Conservative Soft Actor Critic (SAC)

Reinforcement Learning

Online RL

Offline RL

Off-Policy RL

• Form of online RL since agent can experiment with its policy in environment

Distribution Shift

- Train distribution different from test distribution
- In RL: data generated by π, but goal is to learn improved π'
- Challenge: may choose actions with overestimated Q-values

From Christyn Zehnder (in-Q-Tel)

Offline RL Techniques

- Importance Sampling
- Policy constraints
- Penalty methods
 - Conservative Q-Learning, conservative Soft Actor Critic
- Model-based RL

Off-Policy Evaluation by Q-learning

- Let $\pi_{\beta}(a|s)$ be a behaviour policy to collect $D = \{(s, a, r, s')\}$
- We can evaluate a different policy π by off-policy Q-learning:

$$Q^{\pi} = argmin_{Q}E_{(s,a,r,s')\sim D}\left[\left(r + \gamma E_{a'\sim \pi(a'|s')}[Q(s',a')] - Q(s,a)\right)^{2}\right]$$

- Some Q-values underestimated and others overestimated
- Greedy policy improvement: $\pi_{k+1}(s) \leftarrow argmax_a Q^{\pi_k}(s, a) \forall s$
 - Problem: select actions with overestimated Q-values

 $\sim -$

Conservative Off-Policy Evaluation

Introduce a penalty term

 $\hat{Q}^{\pi} = argmin_{Q} \eta E_{s \sim D, a \sim \pi(a|s)} [Q(s,a)] + E_{(s,a,r,s') \sim D} \left[\left(r + \gamma E_{a' \sim \pi(a'|s')} Q(s',a') - Q(s,a) \right)^{2} \right]$

where η : weight that determines importance of penalty

• Let support(π) = {(*s*, *a*) | π reaches (*s*, *a*) with non-zero probability}

Theorem: If support(π) \subseteq support(π_{β}), then for sufficiently large η , (from Kumar et al. 2020) $\hat{Q}^{\pi}(s, a) \leq Q^{\pi}(s, a) \forall s \in D, a$

Improved Bound

• Remove $E_{s,a\sim D}[Q(s,a)]$ from penalty term

$$\tilde{Q}^{\pi} = \operatorname{argmin}_{Q} \eta \left(E_{s \sim D, a \sim \pi(a|s)} [Q(s,a)] - E_{s,a \sim D} [Q(s,a)] \right)$$
$$+ E_{(s,a,r,s') \sim D} \left[\left(r + \gamma E_{a' \sim \pi(a'|s')} Q(s',a') - Q(s,a) \right)^{2} \right]$$

- We cannot guarantee that $\tilde{Q}^{\pi}(s, a) \leq Q^{\pi}(s, a) \forall s \in D, a$ for sufficiently large η
- Let $V^{\pi}(s) = E_{a \sim \pi(a|s)}Q^{\pi}(s,a)$

Theorem: If support(π) \subseteq support(π_{β}), then for sufficiently large η , (from Kumar et al. 2020) $\tilde{V}^{\pi}(s) \leq V^{\pi}(s) \ \forall s \in D$

Conservative Q-learning

• Idea: let π be the greedy policy: $\pi(s) = argmax_aQ(s, a)$

$$\tilde{Q}^* = \operatorname{argmin}_Q \eta \left(E_{s \sim D} \left[\max_a Q(s, a) \right] - E_{s, a \sim D} [Q(s, a)] \right) \\ + E_{(s, a, r, s') \sim D} \left[\left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)^2 \right]$$

Conservative Q-Learning

Load fixed buffer of experiences Initialize weights *w* and \overline{w} at random in [-1,1]Loop Sample minibatch of *n* experiences from buffer Bellman error: $Err(\mathbf{w}) = \frac{1}{n} \sum_{(s,a,r,s') \in minibatch} \left[\left(Q_{\mathbf{w}}(s,a) - r - \gamma \max_{a'} Q_{\overline{\mathbf{w}}}(s',a') \right)^2 \right]$ Penalty: $Penalty(\mathbf{w}) = \frac{1}{n} \sum_{(s,a) \in minibatch} [\max_{\hat{a}} Q_{\mathbf{w}}(s, \hat{a}) - Q_{\mathbf{w}}(s, a)]$ Update weights: $w \leftarrow w - \alpha \left(\frac{\partial Err}{\partial w} + \eta \frac{\partial Penalty}{\partial w} \right)$ Every *c* steps, update target: $\overline{w} \leftarrow w$

Conservative Soft Q-Learning

Load fixed buffer of experiences Initialize weights *w* and \overline{w} at random in [-1,1]Loop Sample minibatch of *n* experiences from buffer Bellman error: $Err(w) = \frac{1}{n} \sum_{(s,a,r,s') \in minibatch} \left[\left(Q_w(s,a) - r - \gamma \max_{a'} Q_{\overline{w}}(s',a') \right)^2 \right]$ Penalty: $Penalty(\mathbf{w}) = \frac{1}{n} \sum_{(s,a) \in minibatch} [\widetilde{\max}_{\hat{a}} Q_{\mathbf{w}}(s, \hat{a}) - Q_{\mathbf{w}}(s, a)]$ Update weights: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \left(\frac{\partial Err}{\partial \boldsymbol{w}} + \eta \frac{\partial Penalty}{\partial \boldsymbol{w}} \right)$ Every *c* steps, update target: $\overline{w} \leftarrow w$

Conservative Soft Actor Critic (SAC)

Load fixed buffer of experiences Initialize weights w, \overline{w} and θ at random in [-1,1]Loop Sample minibatch of *n* experiences from buffer For each experience (s, a, r, s') in minibatch, sample $a' \sim \pi_{\theta}(a'|s')$ Bellman error: $Err(w) = \frac{1}{n} \sum_{(s,a,r,s',a') \in minibatch} \left[\left(Q_w(s,a) - r - \gamma [Q_{\overline{w}}(s',a') + \lambda H(\pi_{\theta}(\cdot |s'))] \right)^2 \right]$ Penalty: $Penalty(\mathbf{w}) = \frac{1}{n} \sum_{(s,a) \in minibatch} [\widetilde{\max}_{\hat{a}} Q_{\mathbf{w}}(s, \hat{a}) - Q_{\mathbf{w}}(s, a)]$ Q-function update: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \left(\frac{\partial Err}{\partial w} + \eta \frac{\partial Penalty}{\partial w} \right)$ Policy update: Update policy: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \kappa l \left(\pi_{\boldsymbol{\theta}} \middle| softmax \left(Q_{\overline{\boldsymbol{w}}} \middle| \lambda \right) \right)}{2\alpha}$ Every *c* steps, update target: $\overline{w} \leftarrow w$

Empirical Evaluation

Conservative

SAC

Kumar et al. (NeurIPS-2020)

Task Name	SAC	BC	BEAR	BRAC-p	BRAC-v	$CQL(\mathcal{H})$
halfcheetah-random	30.5	2.1	25.5	23.5	28.1	35.4
hopper-random	11.3	9.8	9.5	11.1	12.0	10.8
walker2d-random	4.1	1.6	6.7	0.8	0.5	7.0
halfcheetah-medium	-4.3	36.1	38.6	44.0	45.5	44.4
walker2d-medium	0.9	6.6	33.2	72.7	81.3	79.2
hopper-medium	0.8	29.0	47.6	31.2	32.3	58.0
halfcheetah-expert	-1.9	107.0	108.2	3.8	-1.1	104.8
hopper-expert	0.7	109.0	110.3	6.6	3.7	109.9
walker2d-expert	-0.3	125.7	106.1	-0.2	-0.0	153.9
halfcheetah-medium-expert	1.8	35.8	51.7	43.8	45.3	62.4
walker2d-medium-expert	1.9	11.3	10.8	-0.3	0.9	98.7
hopper-medium-expert	1.6	111.9	4.0	1.1	0.8	111.0
halfcheetah-random-expert	53.0	1.3	24.6	30.2	2.2	92.5
walker2d-random-expert	0.8	0.7	1.9	0.2	2.7	91.1
hopper-random-expert	5.6	10.1	10.1	5.8	11.1	110.5
halfcheetah-mixed	-2.4	38.4	36.2	45.6	45.9	46.2
hopper-mixed	3.5	11.8	25.3	0.7	0.8	48.6
walker2d-mixed	1.9	11.3	10.8	-0.3	0.9	26.7

Table 1: Performance of $CQL(\mathcal{H})$ and prior methods on gym domains from D4RL, on the normalized return metric, averaged over 4 seeds. Note that CQL performs similarly or better than the best prior method with simple datasets, and greatly outperforms prior methods with complex distributions ("–mixed", "–random-expert", "–medium-expert").

