
Lecture 6b: Maximum Entropy RL
CS885 Reinforcement Learning

Pascal Poupart
David R. Cheriton School of Computer Science

Complementary readings:
Haarnoja, Tang, Abbeel, Levine (2017) Reinforcement Learning with Deep Energy-Based Policies, ICML.
Haarnoja, Zhou, Abbeel, Levine (2018) Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor, ICML.

2022-09-30

Maximum Entropy RL

§ Why do several implementations of important RL baselines (e.g., A2C, PPO) add
an entropy regularizer?

§ Why is maximizing entropy desirable in RL?

§ What is the Soft Actor Critic algorithm?

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 2

Reinforcement Learning

Deterministic Policies
§ There always exists an optimal

deterministic policy

§ Search space is smaller for
deterministic than stochastic
policies

§ Practitioners prefer
deterministic policies

Stochastic Policies
§ Search space is continuous for

stochastic policies (helps with
gradient descent)

§ More robust (less likely to overfit)

§ Naturally incorporate exploration

§ Facilitate transfer learning

§ Mitigate local optima

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 3

Encouraging Stochasticity

Standard MDP
§ States: 𝑆

§ Actions: 𝐴

§ Reward: 𝑅(𝑠, 𝑎)

§ Transition: Pr(𝑠!|𝑠, 𝑎)

§ Discount: 𝛾

Soft MDP
§ States: 𝑆

§ Actions: 𝐴

§ Reward: 𝑅 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

§ Transition: Pr(𝑠!|𝑠, 𝑎)

§ Discount: 𝛾

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 4

Entropy

§ Measure of uncertainty
§ Information theory: expected #

of bits needed to communicate
the result of a sample

𝐻 𝑝 = −∑! 𝑝 𝑥 log 𝑝(𝑥)

𝐻(𝑝)

𝑝(𝑥)

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 5

Optimal Policy

§ Standard MDP: 𝜋∗ = argmax
#

∑$%&' 𝛾$𝐸(!,*!|# 𝑅 𝑠$, 𝑎$

§ Soft MDP: 𝜋(,-.∗ = argmax
#

∑$%&' 𝛾$𝐸(!,*!|# 𝑅 𝑠$, 𝑎$ + 𝜆𝐻 𝜋 ⋅ 𝑠$

Maximum entropy policy
Entropy regularized policy

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 6

Q-function
§ Standard MDP

𝑄# 𝑠&, 𝑎& = 𝑅 𝑠&, 𝑎& +;
$%/

0

𝛾$𝐸(!,*!|(",*",#[𝑅 𝑠$, 𝑎$]

§ Soft MDP

𝑄(,-.# 𝑠&, 𝑎& = 𝑅 𝑠&, 𝑎& +;
$%/

0

𝛾$𝐸(!,*!|(",*",# 𝑅 𝑠$, 𝑎$ + 𝜆𝐻 𝜋 ⋅ 𝑠$

NB: No entropy with first reward term
since action is not chosen according to 𝜋

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 7

Greedy Policy
§ Standard MDP (deterministic policy)

𝜋'())*+(𝑠) = argmax
,

𝑄(𝑠, 𝑎)

§ Soft MDP (stochastic policy)

𝜋'())*+ ⋅ 𝑠 = argmax
-

8
,

𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ./0 1 2,⋅ /6
∑! ./0 1 2,, /6 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

when 𝜆 → 0 then 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 becomes regular max

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 8

Derivation
§ Concave objective (can find global maximum)

𝐽(𝜋, 𝑄) = ∑,𝜋 𝑎|𝑠 𝑄 𝑠, 𝑎 + 𝜆𝐻 𝜋 ⋅ 𝑠

= ∑,𝜋 𝑎 𝑠 [𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠]

§ Partial derivative: 89
8- 𝑎 𝑠 = 𝑄 𝑠, 𝑎 − 𝜆 log 𝜋 𝑎 𝑠 + 1

§ Setting the derivative to 0 and isolating 𝜋 𝑎 𝑠 yields
𝜋 𝑎 𝑠 = exp 𝑄 𝑠, 𝑎 /𝜆 − 1 ∝ exp(𝑄 𝑠, 𝑎 /𝜆)

§ Hence 𝜋'())*+ ⋅ 𝑠 = ./0 1 2,⋅ /6
∑! ./0 1 2,, /6 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝑠,⋅ /𝜆)

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 9

Greedy Value Function

§ What is the value function induced by the greedy policy?

§ Standard MDP: 𝑉 𝑠 = max
*
𝑄(𝑠, 𝑎)

§ Soft MDP: 𝑉2:;< 𝑠 = 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑,𝜋'())*+ 𝑎 𝑠 𝑄2:;< 𝑠, 𝑎

= 𝜆 log∑, exp
1"#$% 2,,

6 = M𝑚𝑎𝑥6
,

𝑄2:;<(𝑠, 𝑎)

when 𝜆 → 0 then M𝑚𝑎𝑥6 becomes regular max

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 10

Derivation
𝑉2:;< 𝑠 = 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑,𝜋'())*+ 𝑎 𝑠 𝑄2:;< 𝑠, 𝑎

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + ∑,𝜋'())*+ 𝑎 𝑠 𝜆 log 𝜋'())*+ 𝑎 𝑠 + log∑,& exp
1"#$% 2,,&

6

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆∑,𝜋'())*+ 𝑎 𝑠 log 𝜋'())*+ 𝑎 𝑠 + 𝜆 log∑,& exp
1"#$% 2,,&

6

= 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 − 𝜆𝐻 𝜋'())*+ ⋅ 𝑠 + 𝜆 log∑,& exp
1"#$% 2,,&

6

= 𝜆 log∑,& exp
1"#$% 2,,&

6
=Mmax6

,
𝑄2:;<(𝑠, 𝑎)

since 𝜋!"##$% 𝑎 𝑠 =
&'()!"#$ *,, /.

∑%& &'()!"#$ *,,& /.

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 11

SoftQValueIteration(MDP, 𝜆)
Initialize 𝜋= to any policy
𝑖 ← 0
Repeat
𝑄2:;<>?@ 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾 ∑2& Pr(𝑠!|𝑠, 𝑎)Mmax6

,&
𝑄2:;<> (𝑠′, 𝑎′)

𝑖 ← 𝑖 + 1
Until 𝑄2:;<> 𝑠, 𝑎 − 𝑄2:;<>A@ 𝑠, 𝑎

B
≤ 𝜖

Extract policy: 𝜋'())*+ ⋅ 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄2:;<> 𝑠,⋅ /𝜆)

Soft Bellman equation: 𝑄2:;<∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ∑2& Pr(𝑠!|𝑠, 𝑎)Mmax6
,&

𝑄2:;<∗ (𝑠′, 𝑎′)

Soft Q-Value Iteration

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 12

Soft Q-learning
§ Q-learning based on Soft Q-Value Iteration

§ Replace expectations by samples

§ Represent Q-function by a function approximator
(e.g., neural network)

§ Do gradient updates based on temporal differences

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 13

Initialize weights 𝒘 and T𝒘 at random in [−1,1]
Observe current state 𝑠
Loop

Select action 𝑎 and execute it
Receive immediate reward 𝑟, observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠!, 𝑟) to experience buffer
Sample mini-batch of experiences from buffer
For each experience �̂�, X𝑎, �̂�!, �̂� in mini-batch

Gradient: 8D((8𝒘 = 𝑄𝒘
2:;< �̂�, X𝑎 − �̂� − 𝛾Mmax6

F,&
𝑄𝒘
2:;<(�̂�′, X𝑎′) 81𝒘

"#$% 2̂, F,
8𝒘

Update weights: 𝒘 ← 𝒘− 𝛼 8D((
8𝒘

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: T𝒘 ← 𝒘

Soft Q-learning (Soft Variant of DQN)

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 14

Soft Actor Critic

§ In practice, actor critic techniques tend to perform better than
Q-learning.

§ Can we derive a soft actor-critic algorithm?

§ Yes, idea:
§ Critic: soft Q-function

§ Actor: (greedy) softmax policy

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 15

Initialize 𝜋= to any policy, 𝑖 ← 0
Repeat

Policy evaluation:
Repeat until convergence
𝑄2:;<
-(𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + 𝛾 ∑2& Pr 𝑠! 𝑠, 𝑎 ∑,& 𝜋> 𝑎′ 𝑠′ 𝑄2:;<

-(𝑠′, 𝑎′ + 𝜆𝐻 𝜋> ⋅ 𝑠′
Policy improvement:

𝜋>?@ 𝑎 𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄2:;<
-(𝑠, 𝑎 /𝜆 =

./0 1"#$%
)(2,, /6

∑!& ./0 1"#$%
)(2,,& /6

∀𝑠, 𝑎

𝑖 ← 𝑖 + 1

Until 𝑄2:;<
-(𝑠, 𝑎 − 𝑄2:;<

-(*+ 𝑠, 𝑎
B
≤ 𝜖

Soft Policy Iteration

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 16

∀𝑠, 𝑎

Policy Improvement

Theorem 1: Let 𝑄2:;<
-((𝑠, 𝑎) be the Q-function of 𝜋>

Let 𝜋>?@ 𝑎 𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄2:;<
-(𝑠, 𝑎 /𝜆

Then 𝑄2:;<
-(,+ 𝑠, 𝑎 ≥ 𝑄2:;<

-(𝑠, 𝑎 ∀𝑠, 𝑎

Proof: first show that

5
,

𝜋0 𝑎 𝑠 𝑄*123
4' (𝑠, 𝑎) + 𝜆𝐻 𝜋0 ⋅ 𝑠 ≤5

,

𝜋056 𝑎 𝑠 𝑄*123
4' 𝑠, 𝑎 + 𝜆𝐻(𝜋056 ⋅ 𝑠

then use this inequality to show that
𝑄*123
4'() 𝑠, 𝑎 ≥ 𝑄*123

4' 𝑠, 𝑎 ∀𝑠, 𝑎

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 17

Inequality Derivation
∑,𝜋> 𝑎 𝑠 𝑄2:;<

-((𝑠, 𝑎) + 𝜆𝐻 𝜋> ⋅ 𝑠

= ∑,𝜋> 𝑎 𝑠 𝑄2:;<
-(𝑠, 𝑎 − 𝜆 log 𝜋> 𝑎 𝑠

= ∑,𝜋> 𝑎 𝑠 [𝜆 log 𝜋>?@ 𝑎 𝑠 − 𝜆 log∑,& exp(𝑄2:;<
-(𝑠, 𝑎! /𝜆) − 𝜆 log 𝜋> 𝑎 𝑠]

= 𝜆∑,𝜋> 𝑎 𝑠 [log
-(,+ 𝑎 𝑠
-(𝑎 𝑠 + log∑,& exp(𝑄2:;<

-(𝑠, 𝑎′ /𝜆)]

= −𝜆𝐾𝐿(𝜋>?@| 𝜋> + 𝜆∑,𝜋> 𝑎 𝑠 log∑,& exp(𝑄2:;<
-(𝑠, 𝑎′ /𝜆)

≤ 𝜆∑,𝜋> 𝑎 𝑠 log∑,& exp(𝑄2:;<
-(𝑠, 𝑎′ /𝜆)

= ∑,𝜋>?@ 𝑎 𝑠 𝜆 log∑,& exp(𝑄2:;<
-(𝑠, 𝑎′ /𝜆)

= ∑,𝜋>?@ 𝑎 𝑠 𝑄2:;<
-(𝑠, 𝑎 − 𝜆 log 𝜋>?@ 𝑠, 𝑎

= ∑,𝜋>?@ 𝑎 𝑠 𝑄2:;<
-(𝑠, 𝑎 + 𝜆𝐻 𝜋>?@ ⋅ 𝑠

since 𝜋056 𝑎 𝑠 =
&'()!"#$

*' *,, /.

∑%& &'()!"#$
*' *,,& /.

since 𝜋056 𝑎 𝑠 = &'()*' *,, /.
∑%& &'()*' *,,& /.

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 18

Proof Derivation

𝑄2:;<
-(𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝐸2& 𝐸,&~-(𝑄2:;<

-(𝑠!, 𝑎! + 𝜆𝐻 𝜋> ⋅ 𝑠′

≤ 𝑅 𝑠, 𝑎 + 𝛾𝐸2& 𝐸,&~-(,+ 𝑄2:;<
-(𝑠!, 𝑎! + 𝜆𝐻 𝜋>?@ ⋅ 𝑠′

≤ ⋯
≤ ⋯

≤ 𝑄2:;<
-(,+(𝑠, 𝑎)

since 𝐸,&~4' 𝑄*123
4' 𝑠8, 𝑎8 + 𝜆𝐻 𝜋0 ⋅ 𝑠′ ≤ 𝐸,&~4'() 𝑄*123

4' 𝑠8, 𝑎8 + 𝜆𝐻 𝜋056 ⋅ 𝑠′

repeatedly apply
Q9:;<
4+ (s′, a′) ≤ 𝑅 𝑠′, 𝑎′ + 𝛾𝐸*&& 𝐸,&&~4'() 𝑄*123

4' 𝑠88, 𝑎88 + 𝜆𝐻 𝜋056 ⋅ 𝑠′′

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 19

Convergence to Optimal 𝑄!"#$∗ and 𝜋!"#$∗

§ Theorem 2: When 𝜖 = 0,
soft policy iteration converges to optimal 𝑄2:;<∗ and 𝜋2:;<∗ .

§ Proof:
§ We know that 𝑄!!"# 𝑠, 𝑎 ≥ 𝑄!! 𝑠, 𝑎 ∀𝑠, 𝑎 according to Theorem 1
§ Since the Q-functions are upper bounded by max

",$
𝑅 𝑠, 𝑎 + 𝐻 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 /(1 − 𝛾)

then soft policy iteration converges
§ At convergence, 𝑄!!$# = 𝑄!! and therefore the Q-function satisfies Bellman’s equation:

𝑄*123
4',) 𝑠, 𝑎 = 𝑄*123

4' 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾)
*&
Pr(𝑠8|𝑠, 𝑎) /max.

,&
𝑄*123
4',)(𝑠′, 𝑎′)

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 20

Soft Actor-Critic

§ RL version of soft policy iteration

§ Use neural networks to represent policy and value functions

§ At each policy improvement step, project new policy in the space of
parameterized neural nets

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 21

Soft Actor-Critic (SAC)
Initialize weights 𝒘, I𝒘, 𝜃 at random in [−1,1]
Observe current state 𝑠
Loop

Sample action 𝑎~𝜋%(⋅ |𝑠) and execute it
Receive immediate reward 𝑟, observe new state 𝑠’
Add (𝑠, 𝑎, 𝑠&, 𝑟) to experience buffer
Sample mini-batch of experiences from buffer
For each experience �̂�, F𝑎, �̂�&, �̂� in mini-batch

Sample F𝑎′~𝜋%(⋅ |�̂�′)

Gradient: '())
'𝒘

= 𝑄𝒘
+,-. �̂�, F𝑎 − �̂� − 𝛾[Q /𝐰

+,-. �̂�&, F𝑎& + 𝜆𝐻 𝜋% ⋅ �̂�&) '1𝒘
"#$% +̂, 45
'𝒘

Update weights: 𝒘 ← 𝒘− 𝛼 '())
'𝒘

Update policy: 𝜃 ← 𝜃 − 𝛼
'67 𝜋% 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄/8

+,-./𝜆
'%

Update state: 𝑠 ← 𝑠’
Every 𝑐 steps, update target: I𝒘 ← 𝒘

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 22

Comparison
on several
robotics tasks

From Haarnoja, Zhou et al. (2018)

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 23

Empirical Results

Robustness to Environment Changes
SAC on Minotaur - Testing

Using Soft Actor Critic
(SAC), Minotaur
learns to walk quickly
and to generalize to
environments with
challenges that it was
not trained to deal
with!

CS885 Fall 2022 - Lecture 6b - Pascal Poupart PAGE 24

