Lecture 5a: Multi-Armed Bandits CS885 Reinforcement Learning

2022-09-26

Complementary readings: [SutBar] Sec. 2.1-2.7, [Sze] Sec. 4.2.1-4.2.2

Pascal Poupart David R. Cheriton School of Computer Science

- Exploration/exploitation tradeoff
- Regret
- Multi-armed bandits
 - *ϵ*-greedy strategies
 - Upper confidence bounds

Exploration/Exploitation Tradeoff

• Fundamental problem of RL due to the active nature of the learning process

• Consider one-state RL problems known as **bandits**

Stochastic Bandits

- Formal definition:
 - Single state: $S = \{s\}$
 - *A*: set of actions (also known as arms)
 - Space of rewards (often re-scaled to be [0,1])
- No transition function to be learned since there is a single state
- We simply need to learn the **stochastic** reward function

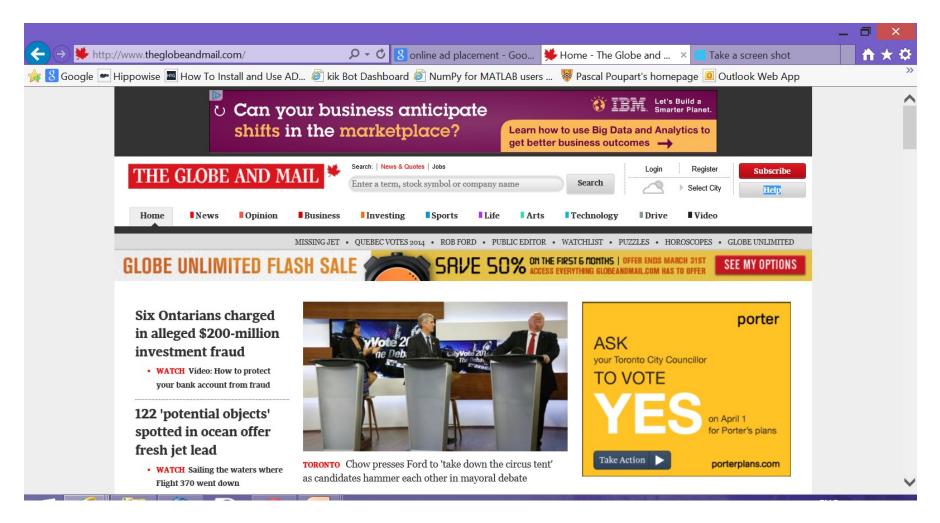
• The term bandit comes from gambling where slot machines can be thought as one-armed bandits.

 Problem: which slot machine should we play at each turn when their payoffs are not necessarily the same and initially unknown?

Examples

- Design of experiments (Clinical Trials)
- Online ad placement
- Web page personalization
- Recommender systems
- Networks (packet routing)

Online Ad Placement



Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

 $payoff = clickThroughRate \times payment$

- Click through rate: probability that user clicks on ad
- Payment: \$\$ paid by advertiser
 - Amount determined by an auction

Simplified Problem

- Assume payment is 1 unit for all ads
- Need to estimate click through rate
- Formulate as a bandit problem:
 - Arms: the set of possible ads
 - Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
 - How should we balance exploitation and exploration?

Simple yet Difficult Problem

Simple: description of the problem is short

Difficult: no known tractable optimal solution

Simple Heuristics

- **Greedy strategy**: select the arm with the highest average so far
 - May get stuck due to lack of exploration

- *ε*-greedy: select an arm at random with probability *ε* and otherwise do a greedy selection
 - Convergence rate depends on choice of ϵ

Regret

- Let R(a) be the unknown average reward of a
- Let $r^* = \max_a R(a)$ and $a^* = \operatorname{argmax}_a R(a)$
- Denote by *loss*(*a*) the expected regret of *a*

 $loss(a) = r^* - R(a)$

• Denote by *Loss_n* the expected cumulative regret for *n* time steps

$$Loss_n = \sum_{t=1}^n loss(a_t)$$

Theoretical Guarantees

- When ϵ is constant, then
 - For large enough t: $\Pr(a_t \neq a^*) \approx \epsilon$
 - Expected cumulative regret: $Loss_n \approx \sum_{t=1}^n \epsilon = O(n)$
 - Linear regret
- When $\epsilon_t \propto 1/t$

 - For large enough t: Pr(a_t ≠ a^{*}) ≈ ε_t = 0 (¹/_t)
 Expected cumulative regret: Loss_n ≈ Σⁿ_{t=1} ¹/_t = 0(log n)
 - Logarithmic regret

Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean R(a)?
- If we knew that $|R(a) \tilde{R}(a)| \le bound$
 - Then we would know that $R(a) < \tilde{R}(a) + bound$
 - And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter *bound*.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on R(a) for each arm based on n trials of arm a.
- Suppose the upper bound returned by this oracle converges to *R(a)* in the limit:
 - i.e., $\lim_{n \to \infty} UB_n(a) = R(a)$
- Optimistic algorithm
 - At each step, select $argmax_a UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects argmax_aUB_n(a) will converge to a*
- Proof by contradiction:
 - Suppose that we converge to suboptimal arm *a* after infinitely many trials.
 - Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \forall a'$
 - But $R(a) \ge R(a') \forall a'$ contradicts our assumption that *a* is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However we can obtain measures *f* that are upper bounds most of the time
 - i.e., $\Pr(R(a) \le f(a)) \ge 1 \delta$
 - Example: Hoeffding's inequality

$$\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{2n_a}}\right) \ge 1 - \delta$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose *a* with highest Hoeffding bound

UCB(h) $V \leftarrow 0, n \leftarrow 0, n_a \leftarrow 0 \quad \forall a$ Repeat until n = hExecute $\operatorname{argmax}_{a} \tilde{R}(a) + \sqrt{\frac{2 \log n}{n}}$ Receive r $V \leftarrow V + r$
$$\begin{split} \tilde{R}(a) &\leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1} \\ n &\leftarrow n + 1, \ n_a \leftarrow n_a + 1 \end{split}$$
Return V

UCB Convergence

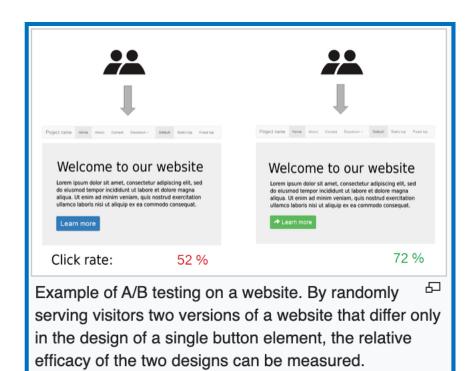
- **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.
- Idea: As *n* increases, the term $\sqrt{\frac{2 \log n}{n_a}}$ increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(\log n)$
 - Logarithmic regret

Extension of A/B Testing

- **A/B Testing:** randomized experiment with 2 variants
 - Select best variant after completion of experiment

Example: email marketing

- "Offer ends this Saturday! Use code A" (response rate: 5%)
- "Offer ends soon! Use code B" (response rate: 3%)
- Multi-armed bandits: form of continual A/B testing



Summary

- Stochastic bandits
 - Exploration/exploitation tradeoff
- ϵ -greedy and UCB
 - Theory: logarithmic expected cumulative regret
- In practice:
 - UCB often performs better than ϵ -greedy
 - Many variants of UCB improve performance

