Lecture 1b: Markov Decision Processes CS885 Reinforcement Learning

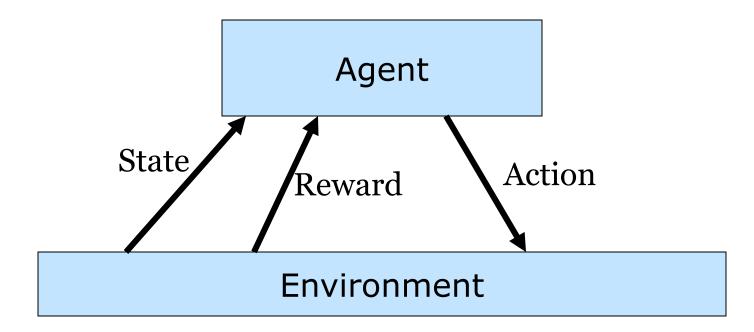
2022-09-09

Complementary readings: [SutBar] Chap. 3, [Sze] Chap. 2, [RusNor] Sec. 15.1, 17.1-17.2, 17.4, [Put] Chap. 2, 4, 5

Pascal Poupart David R. Cheriton School of Computer Science

- Markov Decision Processes
- Value Iteration

Recall: RL Problem



Goal: Learn to choose actions that maximize rewards

Unrolling the Problem

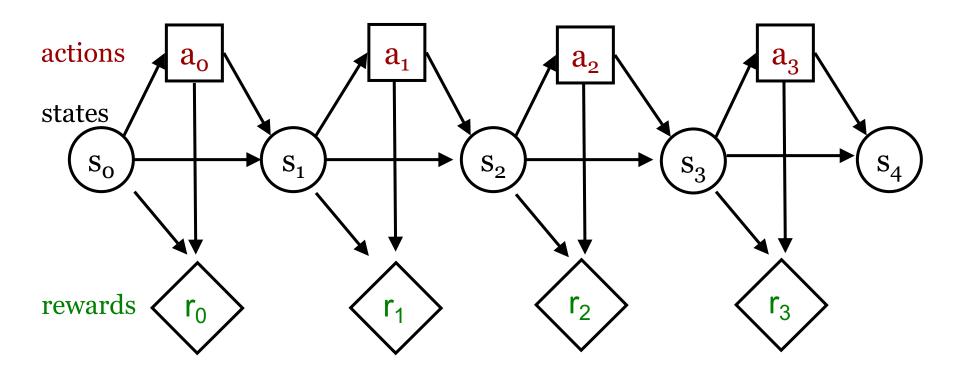
 Unrolling the control loop leads to a sequence of states, actions and rewards:

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, a_2, r_2, \dots$$

• This sequence forms a stochastic process (due to some uncertainty in the dynamics of the process)

Markov Decision Processes

Probabilistic graphical model



Examples

- Robotic control
 - **States:** $\langle x, y, z, \theta \rangle$ coordinates of joints
 - Actions: forces applied to joints
 - **Rewards:** distance to goal position
- Inventory management
 - States: inventory level
 - Actions: {doNothing, orderWidgets}
 - **Rewards:** sales costs storage

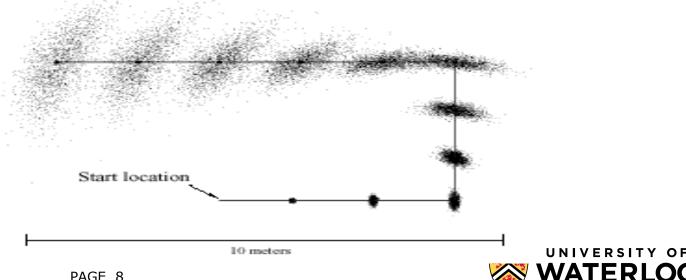
Markov Decision Processes

- Formal Definition
 - States: $s \in S$
 - Actions: $a \in A$
 - Rewards: $r \in \mathbb{R}$
 - Transition model: $\Pr(s_t | s_{t-1}, a_{t-1})$
 - Reward model: $\Pr(r_t|s_t, a_t)$, $R(s_t, a_t) = \sum_{r_t} r_t \Pr(r_t|s_t, a_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$
- Goal: find optimal policy

Transition Model

- Definition: $\Pr(s_t | s_{t-1}, a_{t-1})$
 - Capture uncertainty in dynamics of the system
- Assumptions
 - Markov: $\Pr(s_t | s_{t-1}, a_{t-1}, s_{t-2}, a_{t-2}, ...) = \Pr(s_t | s_{t-1}, a_{t-1})$
 - Stationary: $Pr(s_t | s_{t-1}, a_{t-1})$ is same for $\forall t$

- *s_t*: **position**
- a_t : motion



Reward Model

- Rewards: $r_t \in \Re$
- Reward function: $R(s_t, a_t) = \sum_{r_t} r_t \Pr(r_t | s_t, a_t)$
- Common assumption: stationary reward function *R*(*s*_t, *a*_t) is the same ∀*t*
- Exception: terminal reward function often different
 - E.g., in a game: 0 reward at each turn and +1/-1 at the end for winning/losing
- Goal: maximize sum of expected rewards $\sum_t R(s_t, a_t)$

Discounted/Average Rewards

- If process infinite, isn't $\sum_t R(s_t, a_t)$ infinite?
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma < 1$
 - Finite utility: $\sum_t \gamma^t R(s_t, a_t)$ is a geometric sum
 - γ induces an inflation rate of $1/\gamma 1$
 - Intuition: prefer utility sooner than later
- Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales, but increases storage costs

Choice of action at each time step

- Formally:
 - Mapping from states to actions
 - i.e., $\pi(s_t) = a_t$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t

Policy Optimization

- Policy evaluation:
 - Compute expected utility

 $V^{\pi}(s_0) = \sum_{t=0}^{h} \gamma^t \sum_{s_t} \Pr(s_t | s_0, \pi) R(s_t, \pi(s_t))$

- Optimal policy:
 - Policy with highest expected utility

 $V^{\pi^*}(s_0) \ge V^{\pi}(s_0) \ \forall \pi$

Policy Optimization

- Several classes of algorithms:
 - Value iteration
 - Policy iteration
 - Linear Programming
 - Search techniques
- Computation may be done
 - Offline: before the process starts
 - Online: as the process evolves

Value Iteration Algorithm

valueIteration(MDP) $V_0^*(s) \leftarrow \max_a R(s, a) \forall s$ For n = 1 to h do $V_n^*(s) \leftarrow \max_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{n-1}^*(s') \forall s$ Return V^*

Optimal policy
$$\pi^*$$

 $t = 0: \pi_0^*(s) \leftarrow \operatorname{argmax} R(s, a) \forall s$
 $t > 0: \pi_n^*(s) \leftarrow \operatorname{argmax} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{n-1}^*(s') \forall s$
NB: π^* is non stationary (i.e., time dependent)

Value Iteration

• Matrix form:

 R^a : $|S| \times 1$ column vector of rewards for a V_n^* : $|S| \times 1$ column vector of state values T^a : $|S| \times |S|$ matrix of transition prob. for a

```
valueIteration(MDP)

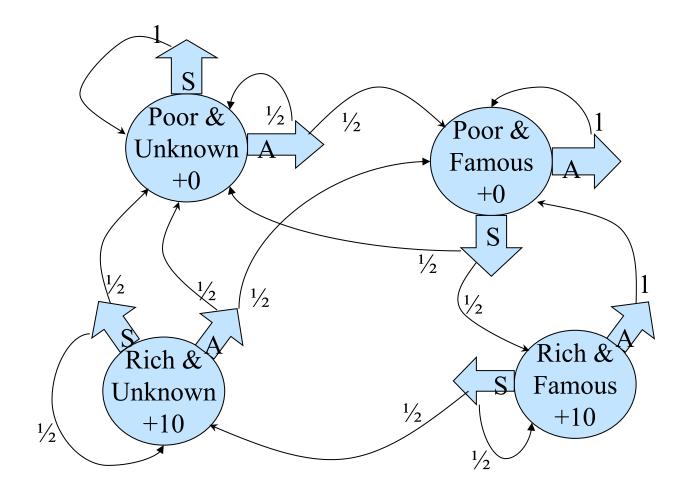
V_0^* \leftarrow \max_a R^a

For t = 1 to h do

V_n^* \leftarrow \max_a R^a + \gamma T^a V_{n-1}^*

Return V^*
```


A Markov Decision Process

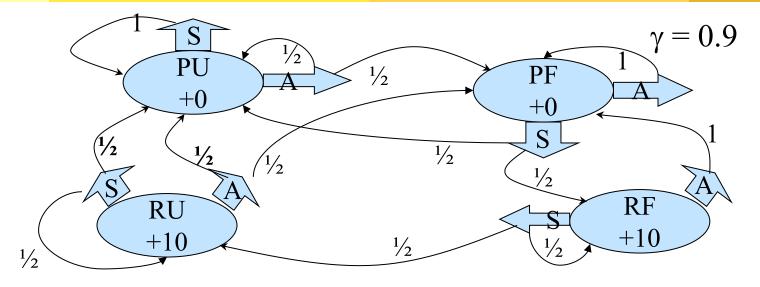


 $\gamma = 0.9$

You own a company

In every state you must choose between

Saving money or Advertising



n	V(PU)	$\pi(PU)$	V(PF)	$\pi(PF)$	V(RU)	$\pi(RU)$	V(RF)	$\pi(RF)$
0	0	A,S	0	A,S	10	A,S	10	A,S
1	0	A,S	4.5	S	14.5	S	19	S
2	2.03	A	8.55	S	16.53	S	25.08	S
3	4.76	A	12.20	S	18.35	S	28.72	S
4	7.63	A	15.07	S	20.40	S	31.18	S
5	10.21	A	17.46	S	22.61	S	33.21	S

Horizon Effect

- Finite *h*:
 - Non-stationary optimal policy
 - Best action different at each time step
 - Intuition: best action varies with the amount of time left
- Infinite *h*:
 - Stationary optimal policy
 - Same best action at each time step
 - Intuition: same (infinite) amount of time left at each time step, hence same best action
 - **Problem:** value iteration does infinite # of iterations...

Infinite Horizon

- Assuming a discount factor γ , after *n* time steps, rewards are scaled down by γ^n
- For large enough *n*, rewards become insignificant since $\gamma^n \rightarrow 0$
- Solution:
 - pick large enough n
 - run value iteration for n steps
 - Execute policy found at the n^{th} iteration

