Lecture 14: RL with Sequence Modeling
CS885 Reinforcement Learning
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Outline

= Transformers
= Deep Transformer Q-Networks

= Decision Transformers

= Structured State Space Sequence (S4) Model
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Sequence Models

» Hidden Markov Models
= Recurrent Neural Networks
» Transformers

= Structured State Space Sequence (S4) Models
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Transformers and Attention

= Viswani et al. (2017)
Attention is all you need

T
attention(Q,K,V) = softmax (%) V
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Transformers and Attention

= Advantages over RNNs:

= Enable long range dependencies
= Parallel inference

= Disadvantage:

= Quadratic complexity in sequence length
and hidden space dimensionality
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Transformers vs RNNs

» Transformers have displaced RNNs in NLP

= Since RNNs are also used in RL, how can we leverage transformers?
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-
Transformer in Partially Observable RL

= Replace RNN by Transformer in partially observable RL
= DTQN: Deep Transformer Q-Network (Esslinger et al., 2022)
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Fig. 2: Different representative architectures. (a) DQN, (b) DRQN, (c) DTQN.
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Figure 1: Architectural diagram of DTQN. Each observation in the history is embedded independently,
and Q-values are generated for each observation sub-history. Only the last set of Q-values are used to
select the next action, but the other Q-values can be utilized for training.
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DTON Results

from Esslinger et al., 2022
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New Paradigm: RL by Sequence Modeling

= Replace everything (i.e., actor and critic) in RL by a Transformer

= In other words: transformers are all you need!

°© o o causal transformer e o o

.0.0.0.0

A !/
from Chen et al., 2021 21 - 0
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Decision Transformers

= Offline RL
= Fixed dataset of trajectories (no exploration)

» Trajectories may include random walks and expert trajectories

graph training dataset (random walks) generation
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Training (Offline RL)

= Given a history of (Ry, s, ay, R3, 53, az, ..., Ry, Sy )
= Predict a,,
= Minimize
» Mean squared error for continuous actions

= Cross-entropy for discrete actions
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Policy execution (Online Execution)

Select a desired total return R,

Predict next action (R,,s;) — a, and execute it

Receive reward r; and next state s,

Decrement total return R, = R; — ry

Predict next action (R;, s1, a4, Ry, s,) = a, and execute it
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Results: Expected Rewards

=== Decision Transformer (Ours) ==== TD Learning ====_Behavior Cloning

Atari OpenAl Gym Key-To-Door

100

Performance
(9]
o

Figure 3: Results comparing Decision Transformer (ours) to TD learning (CQL) and behavior
cloning across Atari, OpenAl Gym, and Minigrid. On a diverse set of tasks, Decision Transformer
performs comparably or better than traditional approaches. Performance is measured by normalized
episode return (see text for details).
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Results: modeling the distribution of returns

= How well does Decision Transformer model the distribution of returns?
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Figure 4: Sampled (evaluation) returns accumulated by Decision Transformer when conditioned on
the specified target (desired) returns. Top: Atari. Bottom: D4RL medium-replay datasets.
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Results: impact of context length

= What is the benefit of using a longer context length?

Game DT (Ours) DT with no context (K = 1)

Breakout 267.5 +£97.5 73.9 £ 10
Qbert 25.1 +18.1 13.7+£ 6.5
Pong 106.1 = 8.1 2.5 1+0.2
Seaquest 24 +0.7 0.5+ 0.0

Table 5: Ablation on context length. Decision Transformer (DT) performs better when using a longer
context length (K = 50 for Pong, K = 30 for others).
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Results: sparse rewards

= How does Decision Transformer perform with sparse rewards?

Delayed (Sparse) Agnostic Original (Dense)
Dataset Environment DT (Ours) CQL | BC %BC | DT (Ours) CQL
Medium-Expert  Hopper 107.3 + 3.5 9.0 | 59.9 102.6 107.6 111.0
Medium Hopper 60.7 &+ 4.5 5.2 | 63.9 65.9 67.6 58.0
Medium-Replay = Hopper 78.5+ 3.7 2.0 | 27.6 70.6 82.7 48.6

Table 7: Results for D4RL datasets with delayed (sparse) reward. Decision Transformer (DT) and
imitation learning are minimally affected by the removal of dense rewards, while CQL fails.
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Open Questions

« How do we select the desired total return R?

* Is it possible to combine decision transformers with hindsight
experience replay to increase generalization?

» What are the generalization properties of decision
transformers?

e Could we use decision transformers for online RL?
« How to handle longer horizons?
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Structured State Space Sequence (S4) Model

* Very recent approach (Gu, Goel & Re, ICLR 2022)

 Potential to displace transformers
» S4 achieved state of the art on Long Range Arena benchmark
» Scales linearly with sequence length
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Structured State Space Sequence (S4) Model

« HiPPO: high-order polynomial projection operators (Gu et al., 2020)
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d
Ec(t) = A(t)c(t) + B(t)f(t)
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Measures (importance given to past history)

Translated Legendre Measure Translated Laguerre Measure Scaled Legendre Measure

flt) f(t) flt)

_/ _/ A,) S

) Ch)
4 \_/ & | pen

Time t

Timet Timet

Figure 5: Illustration of HiPPO measures. At time o, the history of a function f(x).<¢, is summarized by
polynomial approximation with respect to the measure p(t0) (blue), and similarly for time t; (purple). (Left) The
Translated Legendre measure (LegT) assigns weight in the window [t — 6,¢]. For small ¢, u*) is supported on a
region x < 0 where f is not defined. When t is large, the measure is not supported near 0, causing the projection
of f to forget the beginning of the function. (Middle) The Translated Laguerre (LagT) measure decays the past
exponentially. It does not forget, but also assigns weight on x < 0. (Right) The Scaled Legendre measure (LegS)

weights the entire history [0, ¢] uniformly.
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RNN with HiPPO

NB: Aia bi
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Computational Complexity
* S4 scales better than CNNs, RNNs and Transformers

Table 1: Complexity of various sequence models in terms of sequence length (L), batch size (B), and hidden dimension
(H); tildes denote log factors. Metrics are parameter count, training computation, training space requirement, training
parallelizability, and inference computation (for 1 sample and time-step). For simplicity, the state size NV of S4 is tied
to H. Bold denotes model is theoretically best for that metric. Convolutions are efficient for training while recurrence
is efficient for inference, while SSMs combine the strengths of both.

Convolution® Recurrence Attention S4
Parameters LH H? H? H?
Training LH(B + H) BLH? B(L?*H + LH?) BH(H+ L)+ BLH
Space BLH BLH B(L*+ HL) BLH
Parallel Yes No Yes Yes
Inference LH? H? L?H + H?L H?

From Gu, Goel & Re (2022)
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Results: Long Range Arena

MODEL ListTOps TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AvaG
Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 53.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer 37.15 65.52  79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57  79.29 47.38 77.72 X 99.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

From Gu, Goel & Re (2022)
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Results: Speech and Images

Table 5: (SC10 classification) Transformer, CTM, Table 6: (Pixel-level 1-D image classification)
RNN, CNN, and SSM models. (MFCC(C') Standard pre- Comparison against reported test accuracies from prior
processed MFCC features (length 161). (Raw) Unpro- works (Transformer, RNN, CNN, and SSM models).
cessed signals (length 16000). (0.5 %) Frequency change Extended results and citations in Appendix D.
at test time. X denotes not applicable or computation-
ally infeasible on single GPU. Please read Appendiz D.5 SMINIST PMNIST sCIFAR
before citing this table.
Transformer 98.9 97.9 62.2
MFCC  Raw ~ 0.5% LSTM 98.9 95.11 63.01
Transformer 90.75 X X r-LSTM 98.4 95.2 72.2
Performer 80.85 30.77  30.68 UR-LSTM 99.28 96.96 71.00
ODE-RNN 65.9 X X UB—GRU 99.27 96.51 74.4
NRDE 80.8 16.49 15.12 HiPPO-RNN 98.9 98.3 61.1
LMU-FFT - 98.49 -
ExpRNN 82.13 11.6 10.8 LipschitzRNN  99.4 96.3 64.2
LipschitzZRNN  88.38 X X TCN 99.0 979 ]
CKConv 95.3 71.66  65.96 TrellisNet 99.20 98.13 73.42
WaveGAN-D X 96.25 X CKConv 99.32 98.54 63.74
LSSL 93.58 X X LSSL 99.53 98.76 84.65
S4 93.96  98.32 96.30 S4 99.63 98.70 91.13

From Gu, Goel & Re (2022)
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Possible usage in RL

e Partially observable domains:
Replace RNN by S4 in DRQN (i.e., Deep S4 Q-Network)

 Offline RL:
Replace Transtormer by S4 in Decision Transformer
(i.e. Decision-S4)
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