# Lecture 14: RL with Sequence Modeling CS885 Reinforcement Learning

#### 2022-11-4

Complementary readings: Esslinger, Platt & Amato (2022). Deep Transformer Q-Networks for Partially Observable Reinforcement Learning. arXiv. Chen et al.. (2021). Decision transformer: Reinforcement learning via sequence modeling. NeurIPS, 34, 15084-15097. Gu, Goel, & Ré (2022). Efficiently modeling long sequences with structured state spaces. ICLR. Gu, Dao, Ermon, Rudra & Ré (2020). Hippo: Recurrent memory with optimal polynomial projections. NeurIPS, 33, 1474-1487.

Pascal Poupart David R. Cheriton School of Computer Science





- Transformers
  - Deep Transformer Q-Networks
  - Decision Transformers
- Structured State Space Sequence (S4) Model



### **Sequence Models**

- Hidden Markov Models
- Recurrent Neural Networks
- Transformers
- Structured State Space Sequence (S4) Models



#### **Transformers and Attention**

Viswani et al. (2017)
Attention is all you need

$$attention(Q, K, V) = softmax\left(\frac{Q^{T}K}{\sqrt{d_{k}}}\right)V$$





#### **Transformers and Attention**

- Advantages over RNNs:
  - Enable long range dependencies
  - Parallel inference
- Disadvantage:
  - Quadratic complexity in sequence length and hidden space dimensionality





from d2l.ai



#### **Transformers vs RNNs**

Transformers have displaced RNNs in NLP

• Since RNNs are also used in RL, how can we leverage transformers?



# **Transformer in Partially Observable RL**

- Replace RNN by Transformer in partially observable RL
- DTQN: Deep Transformer Q-Network (Esslinger et al., 2022)



Fig. 2: Different representative architectures. (a) DQN, (b) DRQN, (c) DTQN.





Figure 1: Architectural diagram of DTQN. Each observation in the history is embedded independently, and Q-values are generated for each observation sub-history. Only the last set of Q-values are used to select the next action, but the other Q-values can be utilized for training.

#### **DTQN Results**

from Esslinger et al., 2022





# **New Paradigm: RL by Sequence Modeling**

- Replace everything (i.e., actor and critic) in RL by a Transformer
- In other words: transformers are all you need!



## **Decision Transformers**

- Offline RL
- Fixed dataset of trajectories (no exploration)
- Trajectories may include random walks and expert trajectories





# Training (Offline RL)

- Given a history of  $\langle \hat{R}_1, s_1, a_1, \hat{R}_2, s_2, a_2, \dots, \hat{R}_n, s_n \rangle$ 
  - Predict  $a_n$
  - Minimize
    - Mean squared error for continuous actions
    - Cross-entropy for discrete actions



# **Policy execution (Online Execution)**

- Select a desired total return  $\hat{R}_1$
- Predict next action  $\langle \hat{R}_1, s_1 \rangle \rightarrow a_1$  and execute it
- Receive reward  $r_1$  and next state  $s_2$
- Decrement total return  $\hat{R}_2 = \hat{R}_1 r_1$
- Predict next action  $\langle \hat{R}_1, s_1, a_1, \hat{R}_2, s_2 \rangle \rightarrow a_2$  and execute it



#### **Results: Expected Rewards**



Figure 3: Results comparing Decision Transformer (ours) to TD learning (CQL) and behavior cloning across Atari, OpenAI Gym, and Minigrid. On a diverse set of tasks, Decision Transformer performs comparably or better than traditional approaches. Performance is measured by normalized episode return (see text for details).



## **Results: modeling the distribution of returns**

- How well does Decision Transformer model the distribution of returns?



Figure 4: Sampled (evaluation) returns accumulated by Decision Transformer when conditioned on the specified target (desired) returns. **Top:** Atari. **Bottom:** D4RL medium-replay datasets.

UNIVERSITY OF

#### Results: impact of context length

• What is the benefit of using a longer context length?

| Game                                  | DT (Ours)                                                                                                              | <b>DT with no context</b> $(K = 1)$                                                 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Breakout<br>Qbert<br>Pong<br>Seaquest | $\begin{array}{c} {\bf 267.5 \pm 97.5} \\ {\bf 25.1 \pm 18.1} \\ {\bf 106.1 \pm 8.1} \\ {\bf 2.4 \pm 0.7} \end{array}$ | $egin{array}{c} 73.9 \pm 10 \ 13.7 \pm 6.5 \ 2.5 \pm 0.2 \ 0.5 \pm 0.0 \end{array}$ |

Table 5: Ablation on context length. Decision Transformer (DT) performs better when using a longer context length (K = 50 for Pong, K = 30 for others).



#### **Results: sparse rewards**

How does Decision Transformer perform with sparse rewards?

|               |             | Delayed (Sparse) |     | Agnostic |       | Original (Dense) |       |
|---------------|-------------|------------------|-----|----------|-------|------------------|-------|
| Dataset       | Environment | DT (Ours)        | CQL | BC       | %BC   | DT (Ours)        | CQL   |
| Medium-Expert | Hopper      | $107.3 \pm 3.5$  | 9.0 | 59.9     | 102.6 | 107.6            | 111.0 |
| Medium        | Hopper      | $60.7\pm4.5$     | 5.2 | 63.9     | 65.9  | 67.6             | 58.0  |
| Medium-Replay | Hopper      | $78.5 \pm 3.7$   | 2.0 | 27.6     | 70.6  | 82.7             | 48.6  |

Table 7: Results for D4RL datasets with delayed (sparse) reward. Decision Transformer (DT) and imitation learning are minimally affected by the removal of dense rewards, while CQL fails.



# **Open Questions**

- How do we select the desired total return *R*?
- Is it possible to combine decision transformers with hindsight experience replay to increase generalization?
- What are the generalization properties of decision transformers?
- Could we use decision transformers for online RL?
- How to handle longer horizons?



#### Structured State Space Sequence (S4) Model

- Very recent approach (Gu, Goel & Re, ICLR 2022)
- Potential to displace transformers
  - S4 achieved state of the art on Long Range Arena benchmark
  - Scales linearly with sequence length



#### Structured State Space Sequence (S4) Model

• HiPPO: high-order polynomial projection operators (Gu et al., 2020)





# Measures (importance given to past history)



Figure 5: Illustration of HiPPO measures. At time  $t_0$ , the history of a function  $f(x)_{x \le t_0}$  is summarized by polynomial approximation with respect to the measure  $\mu^{(t_0)}$  (blue), and similarly for time  $t_1$  (purple). (Left) The Translated Legendre measure (LegT) assigns weight in the window  $[t - \theta, t]$ . For small  $t, \mu^{(t)}$  is supported on a region x < 0 where f is not defined. When t is large, the measure is not supported near 0, causing the projection of f to forget the beginning of the function. (Middle) The Translated Laguerre (LagT) measure decays the past exponentially. It does not forget, but also assigns weight on x < 0. (Right) The Scaled Legendre measure (LegS) weights the entire history [0, t] uniformly.

## **RNN with HiPPO**





# **Computational Complexity**

• S4 scales better than CNNs, RNNs and Transformers

Table 1: Complexity of various sequence models in terms of sequence length (L), batch size (B), and hidden dimension (H); tildes denote log factors. Metrics are parameter count, training computation, training space requirement, training parallelizability, and inference computation (for 1 sample and time-step). For simplicity, the state size N of S4 is tied to H. Bold denotes model is theoretically best for that metric. Convolutions are efficient for training while recurrence is efficient for inference, while SSMs combine the strengths of both.

|            | $\operatorname{Convolution}^3$ | Recurrence | Attention        | S4                                 |
|------------|--------------------------------|------------|------------------|------------------------------------|
| Parameters | LH                             | $H^2$      | $H^2$            | $H^2$                              |
| Training   | $	ilde{L}H(B+H)$               | $BLH^2$    | $B(L^2H + LH^2)$ | $BH(	ilde{H}+	ilde{L})+B	ilde{L}H$ |
| Space      | BLH                            | BLH        | $B(L^2 + HL)$    | BLH                                |
| Parallel   | Yes                            | No         | Yes              | Yes                                |
| Inference  | $LH^2$                         | $H^2$      | $L^2H + H^2L$    | $H^2$                              |

From Gu, Goel & Re (2022)



#### **Results: Long Range Arena**

| Model                    | LISTOPS | Text  | Retrieval | IMAGE | Pathfinder   | Path-X | Avg   |
|--------------------------|---------|-------|-----------|-------|--------------|--------|-------|
| Transformer              | 36.37   | 64.27 | 57.46     | 42.44 | 71.40        | X      | 53.66 |
| Reformer                 | 37.27   | 56.10 | 53.40     | 38.07 | 68.50        | X      | 50.56 |
| $\operatorname{BigBird}$ | 36.05   | 64.02 | 59.29     | 40.83 | 74.87        | X      | 54.17 |
| Linear Trans.            | 16.13   | 65.90 | 53.09     | 42.34 | 75.30        | X      | 50.46 |
| Performer                | 18.01   | 65.40 | 53.82     | 42.77 | 77.05        | ×      | 51.18 |
| FNet                     | 35.33   | 65.11 | 59.61     | 38.67 | <u>77.80</u> | X      | 54.42 |
| Nyströmformer            | 37.15   | 65.52 | 79.56     | 41.58 | 70.94        | ×      | 57.46 |
| Luna-256                 | 37.25   | 64.57 | 79.29     | 47.38 | 77.72        | X      | 59.37 |
| $\mathbf{S4}$            | 59.60   | 86.82 | 90.90     | 88.65 | 94.20        | 96.35  | 86.09 |

From Gu, Goel & Re (2022)



#### **Results: Speech and Images**

Table 5: (SC10 classification) Transformer, CTM, RNN, CNN, and SSM models. (*MFCC*) Standard preprocessed MFCC features (length 161). (*Raw*) Unprocessed signals (length 16000). ( $0.5 \times$ ) Frequency change at test time. X denotes not applicable or computationally infeasible on single GPU. *Please read Appendix D.5 before citing this table.* 

|              | MFCC             | RAW              | 0.5 	imes    |
|--------------|------------------|------------------|--------------|
| Transformer  | $90.75 \\ 80.85$ | <b>⊁</b>         | <b>×</b>     |
| Performer    |                  | 30.77            | 30.68        |
| ODE-RNN      | 65.9             | <b>×</b>         | <b>x</b>     |
| NRDE         | 89.8             | 16.49            | 15.12        |
| ExpRNN       | $82.13 \\ 88.38$ | 11.6             | 10.8         |
| LipschitzRNN |                  | <b>X</b>         | <b>X</b>     |
| CKConv       | 95.3             | $71.66 \\ 96.25$ | <u>65.96</u> |
| WaveGAN-D    | X                |                  | ✗            |
| LSSL         | 93.58            | X                | X            |
| S4           | <u>93.96</u>     | 98.32            | 96.30        |

From Gu, Goel & Re (2022)

Table 6: (**Pixel-level 1-D image classification**) Comparison against reported test accuracies from prior works (Transformer, RNN, CNN, and SSM models). Extended results and citations in Appendix D.

|               | SMNIST | PMNIST | sCIFAR |
|---------------|--------|--------|--------|
| Transformer   | 98.9   | 97.9   | 62.2   |
| LSTM          | 98.9   | 95.11  | 63.01  |
| r-LSTM        | 98.4   | 95.2   | 72.2   |
| UR-LSTM       | 99.28  | 96.96  | 71.00  |
| UR-GRU        | 99.27  | 96.51  | 74.4   |
| HiPPO-RNN     | 98.9   | 98.3   | 61.1   |
| LMU- $FFT$    | -      | 98.49  | -      |
| LipschitzRNN  | 99.4   | 96.3   | 64.2   |
| TCN           | 99.0   | 97.2   | -      |
| TrellisNet    | 99.20  | 98.13  | 73.42  |
| CKConv        | 99.32  | 98.54  | 63.74  |
| LSSL          | 99.53  | 98.76  | 84.65  |
| $\mathbf{S4}$ | 99.63  | 98.70  | 91.13  |



# Possible usage in RL

- Partially observable domains: Replace RNN by S4 in DRQN (i.e., Deep S4 Q-Network)
- Offline RL: Replace Transformer by S4 in Decision Transformer (i.e. Decision-S4)

