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§ Transformers
§ Deep Transformer Q-Networks

§ Decision Transformers

§ Structured State Space Sequence (S4) Model

Outline
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§ Hidden Markov Models

§ Recurrent Neural Networks

§ Transformers

§ Structured State Space Sequence (S4) Models

Sequence Models
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Transformers and Attention

§ Viswani et al. (2017) 
Attention is all you need

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 !!"
#"

𝑉
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Transformers and Attention

§ Advantages over RNNs:
§ Enable long range dependencies
§ Parallel inference

§ Disadvantage:
§ Quadratic complexity in sequence length 

and hidden space dimensionality

from d2l.ai
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Transformers vs RNNs

§ Transformers have displaced RNNs in NLP

§ Since RNNs are also used in RL, how can we leverage transformers?
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Transformer in Partially Observable RL
§ Replace RNN by Transformer in partially observable RL

§ DTQN: Deep Transformer Q-Network (Esslinger et al., 2022)
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DTQN Architecture

from Esslinger et al., 2022
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DTQN Results

from Esslinger et al., 2022
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New Paradigm: RL by Sequence Modeling
§ Replace everything (i.e., actor and critic) in RL by a Transformer

§ In other words: transformers are all you need!

from Chen et al., 2021
Decision Transformers

NB:  0𝑅$ = ∑$#%$ 𝛾$
#𝑟$#
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Decision Transformers
§ Offline RL

§ Fixed dataset of trajectories (no exploration)

§ Trajectories may include random walks and expert trajectories
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Training (Offline RL)

§ Given a history of 0𝑅&, 𝑠&, 𝑎&, 0𝑅', 𝑠', 𝑎', … , 0𝑅( , 𝑠(
§ Predict 𝑎!
§ Minimize 

§ Mean squared error for continuous actions

§ Cross-entropy for discrete actions
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Policy execution (Online Execution)
§ Select a desired total return "𝑅"
§ Predict next action "𝑅", 𝑠" → 𝑎" and execute it

§ Receive reward 𝑟" and next state 𝑠#
§ Decrement total return "𝑅# = "𝑅" − 𝑟"

§ Predict next action "𝑅", 𝑠", 𝑎", "𝑅#, 𝑠# → 𝑎# and execute it

§ …
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Results: Expected Rewards
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Results: modeling the distribution of returns

§ How well does Decision Transformer model the distribution of returns?
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Results: impact of context length

§ What is the benefit of using a longer context length?
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Results: sparse rewards

§ How does Decision Transformer perform with sparse rewards?
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Open Questions

• How do we select the desired total return 𝑅?
• Is it possible to combine decision transformers with hindsight 

experience replay to increase generalization?
• What are the generalization properties of decision 

transformers?
• Could we use decision transformers for online RL?
• How to handle longer horizons?
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Structured State Space Sequence (S4) Model

• Very recent approach (Gu, Goel & Re, ICLR 2022)

• Potential to displace transformers
• S4 achieved state of the art on Long Range Arena benchmark
• Scales linearly with sequence length
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Structured State Space Sequence (S4) Model
• HiPPO: high-order polynomial projection operators (Gu et al., 2020) 
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Measures (importance given to past history)
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RNN with HiPPO

𝑐$ 𝑐" 𝑐# 𝑐%

𝑜𝑢𝑡" 𝑜𝑢𝑡# 𝑜𝑢𝑡%

𝑥$ 𝑥" 𝑥#
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𝑐! ← 𝐴"𝑐" + 𝑏"𝑥" 𝑐# ← 𝐴!𝑐! + 𝑏!𝑥! 𝑐$ ← 𝐴#𝑐# + 𝑏#𝑥#

𝑜𝑢𝑡! ← 𝑓%(𝑐!) 𝑜𝑢𝑡# ← 𝑓%(𝑐#) 𝑜𝑢𝑡$ ← 𝑓%(𝑐$)
NB: 𝐴2, 𝑏2
determined 
by HiPPO

Train 𝜃 only



Computational Complexity
• S4 scales better than CNNs, RNNs and Transformers

From Gu, Goel & Re (2022)
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Results: Long Range Arena

From Gu, Goel & Re (2022)
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Results: Speech and Images

From Gu, Goel & Re (2022)
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Possible usage in RL

• Partially observable domains:
Replace RNN by S4 in DRQN (i.e., Deep S4 Q-Network)

• Offline RL: 
Replace Transformer by S4 in Decision Transformer 
(i.e. Decision-S4)
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