Lecture 13: Inverse RL CS885 Reinforcement Learning

2022-10-31

Complementary readings:

Ziebart, B. D., Bagnell, J. A., & Dey, A. K. (2010). Modeling interaction via the principle of maximum causal entropy. In ICML. Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy optimization. In ICML (pp. 49-58).

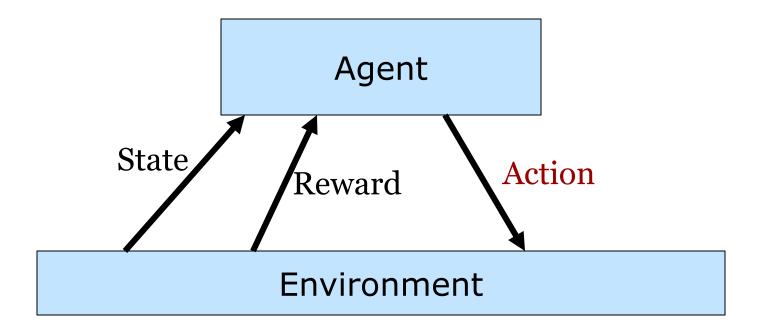
Pascal Poupart David R. Cheriton School of Computer Science

Outline

Inverse Reinforcement Learning (IRL)

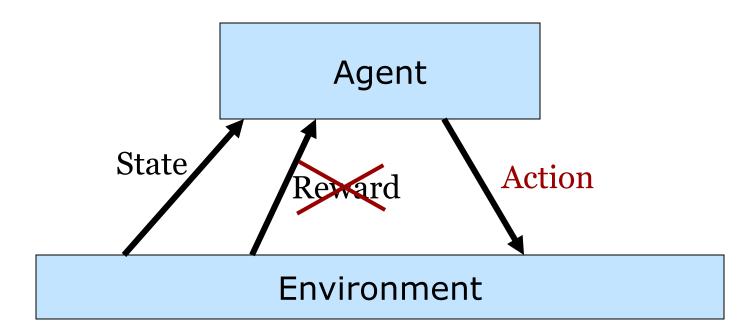
- Feature expectation matching
- Maximum margin IRL
- Maximum entropy IRL
- Guided cost learning

Reinforcement Learning



Goal: Learn to choose actions that maximize rewards $s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_n, a_n, r_n \to \pi^*(a|s)$

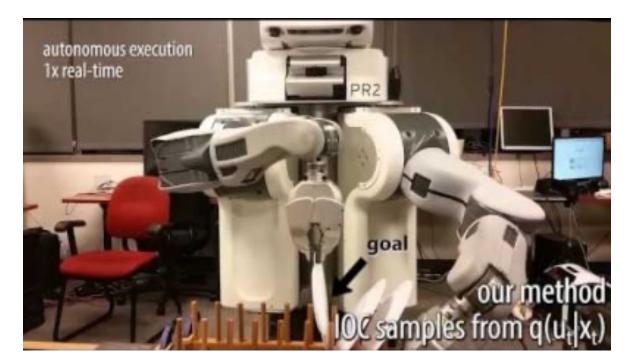
Imitation Learning



Goal: Learn to choose actions that imitate an expert policy $s_1, a_1^*, s_2, a_2^*, \dots, s_n, a_n^* \to \pi^*(a|s)$

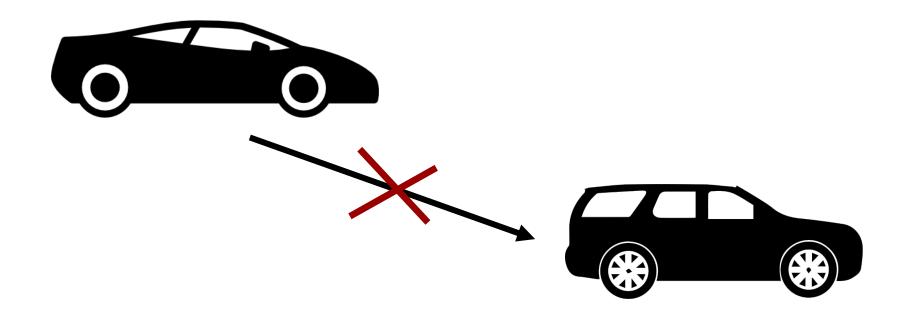
Problems with Imitation Learning

- 1. False assumption: state-action pairs are i.i.d. (independently and identically distributed
 - Non-smooth policy (effect on future states ignored)
 - Brittle policy (can't quantify how bad are suboptimal actions, errors may compound)



Problems with Imitation Learning

2. Can't easily transfer what is learned to new domains



Inverse RL

- Definition
 - States: $s \in S$
 - (Near) optimal actions: $a^* \in A$
 - Rewards: $r \in \mathbb{R}$
 - Rewards: $r \in \mathbb{R}$ Transition model: $Pr(s_t | s_{t-1}, a_{t-1})$ unknown model
 - Reward model: R(s, a) = E[r|s, a]
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$
- Goal: find reward model R(s, a) = E[r|s, a] such that $\pi^* = argmax_{\pi} \sum_{t=0}^{h} \gamma^t E_{\pi} [E[r_t|s_t, a_t]]$

General Approach

- Use IRL to learn reward function
- Then use reward function to learn policy
- Advantages:
 - No assumption that state-action pairs are i.i.d.
 - Transfer reward function to new environments

Inverse RL Techniques

- Feature expectation matching
- Maximum margin IRL
- Maximum entropy IRL
- Guided cost learning
- Bayesian IRL
- Adversarial IRL

Feature Expectation

Assume that reward model *R*(*s*, *a*) is a linear combination of some features φ_i(*s*, *a*):

$$R(s,a) = \sum_{i} w_i \phi_i(s,a) = \boldsymbol{w}^T \boldsymbol{\phi}(s,a)$$

Value function:

$$V^{\pi}(s) = \sum_{t} \gamma^{t} E_{\pi}[R(s_{t}, a_{t})]$$

= $\sum_{t} \gamma^{t} E_{\pi}[\mathbf{w}^{T} \boldsymbol{\phi}(s_{t}, a_{t})]$
= $\mathbf{w}^{T}[\sum_{t} \gamma^{t} E_{\pi}[\boldsymbol{\phi}(s_{t}, a_{t})]]$
= $\mathbf{w}^{T} \overline{\boldsymbol{\phi}}^{\pi}$

Feature Expectation Matching

- Idea: find weights w that define a reward model R such that the optimal policy π^w (with respect to R based on w) matches expert feature expectation.
 - Let $\overline{\phi^e}$ be the feature expectation of expert *e*
 - Let $\pi^{\mathbf{w}}$ be an optimal policy for $R = \mathbf{w}^T \overline{\boldsymbol{\phi}^e}$
 - Find **w** such that $\overline{\phi^e} = \overline{\phi^{\pi^w}}$
- **Problem:** infinitely many *w* satisfy the feature expectation matching equality

Maximum Margin IRL

Idea: find unique weights *w* that lead to the largest margin (value gap) possible between expert actions and non-expert actions.

- Let $\overline{\phi^e}$ be the feature expectation of expert *e*
- Let π^w be an optimal policy for $R = w^T \overline{\phi^e}$
- Find $\boldsymbol{w}^* = \operatorname{argmax}_{\boldsymbol{w}} \min_{\boldsymbol{\pi}} \boldsymbol{w}^T (\overline{\boldsymbol{\phi}^e} \overline{\boldsymbol{\phi}^{\pi}})$

Maximum Margin IRL Pseudocode

Input: expert trajectories $\tau^e \sim \pi^{expert}$ where $\tau^e = (s_1, a_1, s_2, a_2, ...)$ Estimate $\overline{\phi^e}$ from τ^e and learn transition model *T* from τ^e Initialize policy π at random, sample $\tau \sim \pi$ Estimate $\overline{\phi}$ from τ and initialize $\Phi = \{\overline{\phi}\}$ Repeat Compute weights that maximize margin $\boldsymbol{w}^* = \operatorname{argmax}_{\left\{\boldsymbol{w}: \left| |\boldsymbol{w}| \right|_2 = 1\right\}} \operatorname{margin} s.t. \ \operatorname{margin} \leq \boldsymbol{w}^T (\overline{\boldsymbol{\phi}_e} - \overline{\boldsymbol{\phi}}) \quad \forall \boldsymbol{\phi} \in \Phi$ Compute optimal policy for w^* : $\pi^* = solveMDP(T, R, \gamma, h)$ where $R(s, a) = (\mathbf{w}^*)^T \boldsymbol{\phi}$ Sample $\tau \sim \pi^*$, estimate $\overline{\phi}$ from τ and update $\Phi \leftarrow \Phi \cup \{\phi^*\}$ Until margin $\leq \epsilon$ Return w^* and π^*

Issues with Maximum Margin IRL

- Maximizing the margin is arbitrary
- Problem: in some MDPs, the margin between the expert actions and some non-expert actions may be zero
- Idea: find the maximum entropy policy that matches the feature expectation of the expert
 - Benefit: naturally handles near but suboptimal actions in expert trajectories

Maximum Entropy IRL

Input: expert trajectories $\tau^e \sim \pi^e$ where $\tau^e = (s_1, a_1, s_2, a_2, ...)$ Estimate $\overline{\phi^e}$ from τ^e and learn transition model *T* from τ^e Optimize weights:

$$w^{*} = argmax_{\{w: ||w||_{2}=1\}} Entropy(\pi^{*})$$

s.t. $\overline{\phi^{e}} = \overline{\phi^{\pi^{*}}}$
 $\pi^{*} = solveSoftMDP(T, R, \gamma, h)$
 $R(s, a) = w^{T}\phi(s, a)$
Return w^{*} and π^{*}

Limitations of Maximum Entropy IRL

- Applicability of vanilla Maximum Entropy IRL suffers from some limitations:
 - Linear reward model
 - Need to learn a transition model (model-based)
 - Need to solve MDP repeatedly

Guided Cost Learning

- Extension of maximum entropy IRL to
 - Non-linear reward functions
 - Model-free techniques (no explicit transition model)
 - Iterative IRL (no repeated explicit MDP solving)
- See the following paper for details:
 - Finn, Levine, Abeel (2016) Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, *ICML*.

Demo (Guided Cost Learning)

