Lecture 11b: Multi-Task RL CS885 Reinforcement Learning

2022-10-24

Complementary readings: Vithayathil Varghese, N., & Mahmoud, Q. H. (2020). A survey of multi-task deep reinforcement learning. Electronics, 9(9), 1363.

Pascal Poupart David R. Cheriton School of Computer Science

Transfer across multiple tasks

- Domain adaptation
- Fine tuning
- Randomization
- Contextualized RL

Motivation

• Autonomous driving: Parking in different parking lots

• Conversational agents: answer customers of different clients

Multi-Task RL

Transfer what is learned across tasks (task = MDP)

Transfer Learning

RL task #1:

- States: S_1
- Actions: A_1
- Transitions $T_1: P_1(s'|s, a)$
- Rewards $R_1: P_1(r|s, a)$

Solution:

- Q-function: $Q_1(s, a)$
- Policy: $\pi_1(a|s)$
- Model: $\tilde{T}_1, \tilde{R}_1 \blacktriangleleft$

RL task #2:

- States: S_2
- Actions: *A*₂
- Transitions $T_2: P_2(s'|s, a)$
- Rewards $R_2: P_2(r|s, a)$

Solution:

- Q-function: $Q_2(s, a)$
- Policy: $\pi_2(a|s)$
- Model: \tilde{T}_2, \tilde{R}_2

Techniques for RL Transfer Learning

- Domain adaptation
- Fine tuning
- Randomization
- Contextualized RL

Domain Adaptation

- Learn mappings $\phi_i : s_i \to \hat{s}$ that find invariant state features \hat{s} that are common across several tasks
 - E.g. Robotics/autonomous driving with different sensors
 - Assumptions: sensors provide same information in a different form; transition and reward models identical

Domain Adaptation

- Actor π and critique Q are shared across tasks
- Simply prepend π and Q with feature mapping ϕ_i of corresponding task when learning with your favorite actor-critic algorithm

Fine-Tuning

- Pre-train on one task, fine tune on new task
 - Assumption: underlying MDPs are similar
- E.g. conversational agents that answer questions by customers of different clients
 - Task 1 (client 1): Learn Q_1, π_1 with any algorithm
 - Task 2 (client 2): Initialize $Q_2 \leftarrow Q_1, \pi_2 \leftarrow \pi_1$ and then continue training Q_2, π_2 with any algorithm
 - Benefit: faster training for Task 2

Task Randomization

- Modify source task by injecting noise/variations to learn robust Q, π for future tasks
 - E.g. sim2real problem: learn policy in simulation to be deployed in real world

Policy Randomization

- Find a maximum entropy policy that is likely to generalize to slightly different domains
 - E.g. Soft Q-Learning, Soft Actor-Critic

Contextualized RL

- Augment state *s* with features *g* encoding the task
 - Frequent scenario: goal conditioned RL (*g* refers to goal)

- Examples
 - Robotics/autonomous driving: destination determines reward function of task
 - Automated trading: risk preferences determine reward function of task

Contextualized RL

- Augment state *s* with features *g* encoding the task
 - Frequent scenario: goal conditioned RL (*g* refers to goal)

Contextualized RL:

- States: $s \in S$
- Task features: $g \in G$
- Actions: $a \in A$
- Transitions T: P(s'|s, g, a)
- Rewards R: P(r|s, g, a)
- Train your favorite RL algorithm
 - Neural net actor-critic will generalize to new *g*'s

Q-function: Q(s, g, a)Policy: $\pi(a|s, g)$

Demo: Multi-task RL in Robotics

Gupta, Yu, Zhao, Kumar, Rovinsky, Xu, Devlin, Levine (2021), **Reset-Free Reinforcement Learning via Multi-Task Learning:** Learning Dexterous Manipulation Behaviors without Human Intervention ICRA.

