Inverse Reinforcement Learning

CS885 Reinforcement Learning
Module 6: November 9, 2021

Ziebart, B. D., Bagnell, J. A., & Dey, A. K. (2010). Modeling interaction
via the principle of maximum causal entropy. In ICML.

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep
inverse optimal control via policy optimization. In ICML (pp. 49-58).

University of Waterloo CS885 Fall 2021 Pascal Poupart

Reinforcement Learning Problem

Agent

>tate Reward Action

Environment

Data: (sg, ag, 7o, S1, A1, 71, -++» Sp, A, Th)
Goal: Learn to choose actions that maximize rewards

Imitation Learning

Expert

State A] Optimal action

Environment

X k X
Data: (sg, ag, S1, a1, -, Sy, Ap,)
Goal: Learn to choose actions by imitating expert actions

Problems

* Imitation learning: supervised learning formulation

— Issue #1: Assumption that state-action pairs are identically
and independently distributed (i.i.d.) is false

(SO' (13) - (SlJa;) = (Sh' Cl;l)

— Issue #2: Can’t easily transfer learnt policy to
environments with different dynamics

Inverse Reinforcement Learning (IRL)

Benefit: can easily transfer reward function to
new environment where we can learn an optimal policy

/
N\

\\

S\ \\
)))

<))

University of Waterloo CS885 Fall 2021 Pascal Poupart

Formal Definition

Reinforcement Learning (RL) Inverse Reinforcement Learning (IRL)
Definition Definition
e States:s €S e States:s €S
 Actions:a € A * Optimal actions: a* € A

e Rewards:r € R

e Discountfactor:0 <y <1 Discountfactor:0 <y <1

* Horizon (i.e., # of time steps): h * Horizon (i.e., # of time steps): h

Data: (s, ag, 79, S1, A1, 71y - » Shy Ay T1) Data: (sg, ag, S1, a5, ---,» Sp, Q7,)

Goal: find optimal policy * Goal: find Pr(r;|s;, a;) for which
expert actions a” are optimal _ L’ |

University of Waterloo CS885 Fall 2021 Pascal Poupart 6 ¢

IRL Applications

T

w

autonomous driving

robotics

Advantages

 No assumption that state-action pairs are i.i.d.

* Transfer reward function to new environments/tasks

University of Waterloo CS885 Fall 2021 Pascal Poupart

IRL Techniques

General approach:

1. Find reward function for which
expert actions are optimal R(s,a) or Pr(r|s, a)

2. Use reward function to optimize
policy in same or new environments

Broad categories of IRL techniques
* Feature matching

* Maximum margin IRL

* Maximum entropy IRL

* Bayesian IRL

/ A
/ QA)\
[DRINI

AN 7 /)
N 74

University of Waterloo CS885 Fall 2021 Pascal Poupart

Feature Expectation Matching

Normally: find R such that =™ chooses the same
actions a™ as expert

Problem: we may not have enough data for some

states (especially continuous states) to properly
estimate transitions and rewards

Note: rewards typically depend on features ¢; (s, a)

e.g., R(s,a) = Y;w;p;(s,a) = wl¢(s,a)
ldea: Compute feature expectations and match them

Feature Expectation Matching

1
Lot ”8(50) == 71¥=12tyt¢(55n) (n))

be the average feature count of expert e
(where n indexes trajectories)

Let u™ (sy) be the expected feature count of policy

{Claim: If u(s) = ué(s) Vs thenV=(s) = Veé(s) Vs }

Proof

Features: ¢ (s, a) = (¢1(s,a), P,(s, a), p3(s,a),..)"

Linear reward function: R,,(s,a) = X; w;¢;(s,a) = wl ¢(s, a)

Discounted state visitation frequency:

5, (s") = 6(5', 80) + ¥ Xs P, () Pr(s’s, m(s))

Value function: V*(s) = Y YT (SR, (s, (s"))
= X YT HIW (s, m(s"))
= W S P (sN(s' m(s)
=w' 1" (s)
Hence: u*(s) = u(s)
> wip™(s) = wpué(s)
2> V7(s) =Ve(s)

Indeterminacy of Rewards
Learning R,,(s,a) = w! ¢p(s, a) amounts to learning w

When u™(s) = uf(s), then V™ (s) = VVé(s),
but w can be anything since

pr(s) = p(s) > whp'(s) =w'p®(s) vw

We need a bias to determine w
|deas:

— Maximize the margin
— Maximize entropy

Maximum Margin IRL

* ldea: select reward function that yields the greatest
minimum difference (margin) between the Q-values
of the expert actions and other actions

margin = min [Q (s,a”) —maxQ(s, a)]
S aza*

Maximum Margin IRL

Let u™(s,a) = ¢p(s,a) +vy 2 Pr(s’|s,a) u™(s")
Then Q™(s,a) = wlu™(s, a)

Find w™ that maximizes margin:
4

N
w* = argmax,, min [wTu” (s,a*) — maxw! u"(s, a)]
S a+a*

9 s.t. u(s,a) = uf(s,a) vs,a)

Problem: maximizing margin is somewhat arbitrary since it
doesn’t allow suboptimal actions to have values that are close to

optimal

Maximum Entropy

Idea: Among models that match the expert’s average features, select
the model with maximum entropy

max H(P(r))
LA

s.t. @Zredam P(7) = E[¢(T)]
Y,

.

Trajectory: T = (s§, ag, S1, af, ..., Sy, af,)

Trajectory feature vector: ¢(7) = X,y Pp(sf,af)

Trajectory cumulative reward: R(7) = w! ¢p(1) = X, v'wl (s}, a})
eR(D ew! ¢

Y eR® 3wl 9()

Entropy: H(P(7)) = — X P(7) log P(7)

Probability of a trajectory: P, (1) =

Maximum Likelihood

Maximum Entropy

(rp(zg H(P (7)) A
st == Yrcdata $(0) = E[$()]
. J

Dual objective: This is equivalent to maximizing the log
likelihood of the trajectories under the constraint that P(7) takes
an exponential form:

()
m“E}X Zredata log Fy (T)

T
. s.t. P, (1) o eW ¢())

University of Waterloo CS885 Fall 2021 Pascal Poupart 16

Maximum Log Likelihood (LL)

1
x
W = argmaxy eredata log Ry (7)

" ew! ()
= argmax,, WZTEdatQ logz , ewT(l)(TI)
T

1 T (s
= argmaxy WZTEdata WT¢(T) — log ZT’ e ¢(t)
WT¢(T,,) 144
Ze ew'o(r') P

eWT(P(‘L'”)

1 4
= Wzrea‘tam d(T) — 2o 5 e o() d(t")

= e Yredata 9(1) = Lo Pu(@") (")
= Egatal (0] — Ey[p(7)]

. 1
Gradient: V,, LL = WZTEdata¢(T) — D

Gradient estimation

Computing E,, [¢(7)] exactly is intractable due to exponential
number of trajectories. Instead, approximate by sampling.

Importance sampling: Since we don’t have a simple way of
sampling T from PB,,(t), sample T from a base distribution q(7)
and then reweight T by P, (7)/q(7):

1 B,
7~q(7) 1

We can choose g(7) to be a) uniform, b) close to demonstration
distribution, or c) close to B, (1)

Maximum Entropy IRL Pseudocode

Assumption: Linear rewards R,, (s, a) = wl ¢(s, a)

Input: expert trajectories T, ~ Mexpert Where 7, = (51,04, 53, Ay, ...)
Initialize weights w at random

Repeat until stopping criterion

. 1
Expert feature expectation: En, . [¢(7)] = lda—leTe c data P(Te)

Model feature expectation:
Sample n trajectories: T ~ q(7)
1w Py
En[p(@)] = -3, 22 ¢(@)
Gradient: V, LL = Ep, . |[p(7)] — E, | (T)]
Update model: w «w + aV,,LL
Return w

University of Waterloo CS885 Fall 2021 Pascal Poupart 19

Non-Linear Rewards

Suppose rewards are non-linear in w

e.g., R,(s,a) = NeuralNet,,(s,a)

Then R, (t) =X, v'R,, (s, af)

. . 1 /
Likelihood: LL(W) — WZTEdata RW(T) — l()g ZT' eRW(T)

Gradient: V,,LL = E ;4 [V, Ry (T)] = E,y[VyR,, (T)]

Maximum Entropy IRL Pseudocode

General case: Non-linear rewards R, (s, a)

Input: expert trajectories T, ~ Meypert Where 7, = (51, a4, 52,4y, ...)
Initialize weights w at random

Repeat until stopping criterion
1

|data]

Expert feature expectation: Erppert VR (T)] = iz, € data VwRw(Te)

Model feature expectation:
Sample n trajectories: T ~ q(7)

1w Pw(@
Ey[VwRy (T)] = T_lZT q(; VwRy (7)
Gradient: V,, LL = Erppert VR (T)] — Ey[VyWRy, (T)]
Update model: w <« w + aV,,LL

Return w

University of Waterloo CS885 Fall 2021 Pascal Poupart 21

Policy Computation

Two choices:

1) Optimize policy based on R,, (s, a) with favorite RL algorithm
2) Compute policy induced by B, (7).

Induced policy: probability of choosing a after s in trajectories

Let (s, a, T) be a trajectory that starts with s, a and then continues
with the state action-pairs of T

ny(als) = By (als)
— 2t Pw(s,a,7)
T Pu(s@)
py eRw(s,a)+YRy(T)

o Y, eRw(s.a’)+yRy (")
a't

Demo: Maximum Entropy IRL

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning:
Deep inverse optimal control via policy optimization. ICML.

autonomous execution
1x real-time

3 ‘ « otrimetho
~ VItzmples from g(ux)

— /| A
/ o\
[DEIN

University of Waterloo CS885 Fall 2021 Pascal Poupart 23 ’

