

Inverse Reinforcement Learning CS885 Reinforcement Learning Module 6: November 9, 2021

Ziebart, B. D., Bagnell, J. A., & Dey, A. K. (2010). Modeling interaction via the principle of maximum causal entropy. In ICML.

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy optimization. In *ICML* (pp. 49-58).

Reinforcement Learning Problem

Data: $(s_0, a_0, r_0, s_1, a_1, r_1, ..., s_h, a_h, r_h)$

Goal: Learn to choose actions that maximize rewards

Imitation Learning

Data: $(s_0, a_0^*, s_1, a_1^*, ..., s_h, a_h^*)$

Goal: Learn to choose actions by imitating expert actions

Problems

- Imitation learning: supervised learning formulation
 - Issue #1: Assumption that state-action pairs are identically and independently distributed (i.i.d.) is false

$$(s_0, a_0^*) \to (s_1, a_1^*) \to \cdots \to (s_h, a_h^*)$$

 Issue #2: Can't easily transfer learnt policy to environments with different dynamics

Inverse Reinforcement Learning (IRL)

Benefit: can easily transfer reward function to new environment where we can learn an optimal policy

Formal Definition

Reinforcement Learning (RL)

Definition

• States: $s \in S$

• Actions: $a \in A$

• Transition: $Pr(s_t|s_{t-1}, a_{t-1})$

• Rewards: $r \in \mathbb{R}$

• Reward model: $Pr(r_t|s_t, a_t)$

• Discount factor: $0 \le \gamma \le 1$

Horizon (i.e., # of time steps): h

Data: $(s_0, a_0, r_0, s_1, a_1, r_1, ..., s_h, a_h, r_h)$

Goal: find optimal policy π^*

Inverse Reinforcement Learning (IRL)

Definition

• States: $s \in S$

• Optimal actions: $a^* \in A$

• Transition: $Pr(s_t|s_{t-1},a_{t-1})$

• Rewards: $r \in \mathbb{R}$

• Reward model: $Pr(r_t|s_t, a_t)$

• Discount factor: $0 \le \gamma \le 1$

Horizon (i.e., # of time steps): h

Data: $(s_0, a_0^*, s_1, a_1^*, ..., s_h, a_h^*)$

Goal: find $Pr(r_t|s_t, a_t)$ for which

expert actions a^* are optimal

IRL Applications

autonomous driving

robotics

Advantages

- No assumption that state-action pairs are i.i.d.
- Transfer reward function to new environments/tasks

IRL Techniques

General approach:

- Find reward function for which expert actions are optimal
- Use reward function to optimize policy in same or new environments

Broad categories of IRL techniques

- Feature matching
- Maximum margin IRL
- Maximum entropy IRL
- Bayesian IRL

Feature Expectation Matching

- Normally: find R such that π^* chooses the same actions a^* as expert
- Problem: we may not have enough data for some states (especially continuous states) to properly estimate transitions and rewards

- Note: rewards typically depend on features $\phi_i(s, a)$ e.g., $R(s, a) = \sum_i w_i \phi_i(s, a) = \mathbf{w}^T \boldsymbol{\phi}(s, a)$
- Idea: Compute feature expectations and match them

Feature Expectation Matching

Let
$$\mu^e(s_0) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t} \gamma^t \phi(s_t^{(n)}, a_t^{(n)})$$

be the average feature count of expert e (where n indexes trajectories)

Let $\mu^{\pi}(s_0)$ be the expected feature count of policy π

Claim: If
$$\mu^{\pi}(s) = \mu^{e}(s) \ \forall s \ \text{then} \ V^{\pi}(s) = V^{e}(s) \ \forall s$$

Proof

Features:
$$\boldsymbol{\phi}(s,a) = (\phi_1(s,a), \phi_2(s,a), \phi_3(s,a), ...)^T$$

Linear reward function: $R_{\boldsymbol{w}}(s,a) = \sum_i w_i \phi_i(s,a) = \boldsymbol{w}^T \boldsymbol{\phi}(s,a)$

Discounted state visitation frequency:

$$\psi_{s_0}^{\pi}(s') = \delta(s', s_0) + \gamma \sum_s \psi_{s_0}^{\pi}(s) \Pr(s'|s, \pi(s))$$

Value function:
$$V^{\pi}(s) = \sum_{s'} \psi_s^{\pi}(s') R_{\boldsymbol{w}}(s', \pi(s'))$$
$$= \sum_{s'} \psi_s^{\pi}(s') \boldsymbol{w}^T \boldsymbol{\phi}(s', \pi(s'))$$
$$= \boldsymbol{w}^T \sum_{s'} \psi_s^{\pi}(s') \boldsymbol{\phi}(s', \pi(s'))$$
$$= \boldsymbol{w}^T \boldsymbol{\mu}^{\pi}(s)$$

Hence:
$$\mu^{\pi}(s) = \mu^{e}(s)$$

 $\Rightarrow w^{T}\mu^{\pi}(s) = w^{T}\mu^{e}(s)$
 $\Rightarrow V^{\pi}(s) = V^{e}(s)$

Indeterminacy of Rewards

- Learning $R_{\boldsymbol{w}}(s,a) = \boldsymbol{w}^T \boldsymbol{\phi}(s,a)$ amounts to learning \boldsymbol{w}
- When $\mu^{\pi}(s) = \mu^{e}(s)$, then $V^{\pi}(s) = V^{e}(s)$, but w can be anything since

$$\mu^{\pi}(s) = \mu^{e}(s) \rightarrow w^{T}\mu^{\pi}(s) = w^{T}\mu^{e}(s) \forall w$$

- We need a bias to determine w
- Ideas:
 - Maximize the margin
 - Maximize entropy

Maximum Margin IRL

 Idea: select reward function that yields the greatest minimum difference (margin) between the Q-values of the expert actions and other actions

$$margin = \min_{s} \left[Q(s, a^*) - \max_{a \neq a^*} Q(s, a) \right]$$

Maximum Margin IRL

Let
$$\mu^{\pi}(s,a) = \phi(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) \mu^{\pi}(s')$$

Then $Q^{\pi}(s,a) = w^{T} \mu^{\pi}(s,a)$

Find w^* that maximizes margin:

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \min_{s} \left[\mathbf{w}^T \boldsymbol{\mu}^{\pi}(s, a^*) - \max_{a \neq a^*} \mathbf{w}^T \boldsymbol{\mu}^{\pi}(s, a) \right]$$

s.t. $\boldsymbol{\mu}^{\pi}(s, a) = \boldsymbol{\mu}^{e}(s, a) \ \forall s, a$

Problem: maximizing margin is somewhat arbitrary since it doesn't allow suboptimal actions to have values that are close to optimal

Maximum Entropy

Idea: Among models that match the expert's average features, select the model with maximum entropy

$$\max_{P(\tau)} H(P(\tau))$$
s.t. $\frac{1}{|\text{data}|} \sum_{\tau \in data} \boldsymbol{\phi}(\tau) = E[\boldsymbol{\phi}(\tau)]$

Trajectory: $\tau = (s_0^{\tau}, a_0^{\tau}, s_1^{\tau}, a_1^{\tau}, ..., s_h^{\tau}, a_h^{\tau})$

Trajectory feature vector: $\phi(\tau) = \sum_t \gamma^t \phi(s_t^{\tau}, a_t^{\tau})$

Trajectory cumulative reward: $R(\tau) = \mathbf{w}^T \boldsymbol{\phi}(\tau) = \sum_t \gamma^t \mathbf{w}^T \boldsymbol{\phi}(s_t^{\tau}, a_t^{\tau})$

Probability of a trajectory:
$$P_{w}(\tau) = \frac{e^{R(\tau)}}{\sum_{\tau} e^{R(\tau)}} = \frac{e^{w^{T}\phi(\tau)}}{\sum_{\tau'} e^{w^{T}\phi(\tau')}}$$

Entropy: $H(P(\tau)) = -\sum_{\tau} P(\tau) \log P(\tau)$

Maximum Likelihood

Maximum Entropy

$$\max_{P(\tau)} H(P(\tau))$$
s.t.
$$\frac{1}{|\text{data}|} \sum_{\tau \in data} \phi(\tau) = E[\phi(\tau)]$$

Dual objective: This is equivalent to maximizing the log likelihood of the trajectories under the constraint that $P(\tau)$ takes an exponential form:

$$\max_{w} \sum_{\tau \in data} \log P_{w}(\tau)$$

s.t. $P_{w}(\tau) \propto e^{w^{T} \phi(\tau)}$

Maximum Log Likelihood (LL)

$$\begin{aligned} \boldsymbol{w}^* &= argmax_{\boldsymbol{w}} \frac{1}{|data|} \sum_{\tau \in data} \log P_{\boldsymbol{w}}(\tau) \\ &= argmax_{\boldsymbol{w}} \frac{1}{|data|} \sum_{\tau \in data} \log \frac{e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau)}}{\sum_{\tau'} e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau')}} \\ &= argmax_{\boldsymbol{w}} \frac{1}{|data|} \sum_{\tau \in data} \boldsymbol{w}^T \boldsymbol{\phi}(\tau) - \log \sum_{\tau'} e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau')} \end{aligned}$$

Gradient:
$$\nabla_{\boldsymbol{w}}LL = \frac{1}{|data|} \sum_{\tau \in data} \boldsymbol{\phi}(\tau) - \sum_{\tau''} \frac{e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau'')}}{\sum_{\tau'} e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau')}} \boldsymbol{\phi}(\tau'')$$

$$= \frac{1}{|data|} \sum_{\tau \in data} \boldsymbol{\phi}(\tau) - \sum_{\tau''} \frac{e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau'')}}{\sum_{\tau'} e^{\boldsymbol{w}^T \boldsymbol{\phi}(\tau')}} \boldsymbol{\phi}(\tau'')$$

$$= \frac{1}{|data|} \sum_{\tau \in data} \boldsymbol{\phi}(\tau) - \sum_{\tau''} P_{\boldsymbol{w}}(\tau'') \boldsymbol{\phi}(\tau'')$$

$$= E_{data}[\boldsymbol{\phi}(\tau)] - E_{\boldsymbol{w}}[\boldsymbol{\phi}(\tau)]$$

Gradient estimation

Computing $E_w[\phi(\tau)]$ exactly is intractable due to exponential number of trajectories. Instead, approximate by sampling.

$$E_{\mathbf{w}}[\phi(\tau)] \approx \frac{1}{n} \sum_{\tau \sim P_{\mathbf{w}}(\tau)} \phi(\tau)$$

Importance sampling: Since we don't have a simple way of sampling τ from $P_w(\tau)$, sample τ from a base distribution $q(\tau)$ and then reweight τ by $P_w(\tau)/q(\tau)$:

$$E_{\mathbf{w}}[\phi(\tau)] \approx \frac{1}{n} \sum_{\tau \sim q(\tau)} \frac{P_{\mathbf{w}}(\tau)}{q(\tau)} \phi(\tau)$$

We can choose $q(\tau)$ to be a) uniform, b) close to demonstration distribution, or c) close to $P_{\mathbf{w}}(\tau)$

Maximum Entropy IRL Pseudocode

Assumption: Linear rewards $R_{\boldsymbol{w}}(s,a) = \boldsymbol{w}^T \boldsymbol{\phi}(s,a)$

Input: expert trajectories $\tau_e \sim \pi_{expert}$ where $\tau_e = (s_1, a_1, s_2, a_2, ...)$

Initialize weights w at random

Repeat until stopping criterion

Expert feature expectation: $E_{\pi_{expert}}[\boldsymbol{\phi}(\tau)] = \frac{1}{|data|} \sum_{\tau_e \in data} \boldsymbol{\phi}(\tau_e)$

Model feature expectation:

Sample n trajectories: $\tau \sim q(\tau)$

$$E_{\mathbf{w}}[\phi(\tau)] = \frac{1}{n} \sum_{\tau} \frac{P_{\mathbf{w}}(\tau)}{q(\tau)} \phi(\tau)$$

Gradient: $\nabla_{\mathbf{w}}LL = E_{\pi_{expert}}[\boldsymbol{\phi}(\tau)] - E_{\mathbf{w}}[\boldsymbol{\phi}(\tau)]$

Update model: $\mathbf{w} \leftarrow \mathbf{w} + \alpha \nabla_{\mathbf{w}} LL$

Return **w**

Non-Linear Rewards

Suppose rewards are non-linear in w

e.g.,
$$R_w(s, a) = NeuralNet_w(s, a)$$

Then $R_{\mathbf{w}}(\tau) = \sum_{t} \gamma^{t} R_{\mathbf{w}}(s_{t}^{\tau}, a_{t}^{\tau})$

Likelihood: $LL(w) = \frac{1}{|data|} \sum_{\tau \in data} R_w(\tau) - \log \sum_{\tau'} e^{R_w(\tau')}$

Gradient: $\nabla_w LL = E_{data}[\nabla_w R_w(\tau)] - E_w[\nabla_w R_w(\tau)]$

Maximum Entropy IRL Pseudocode

General case: Non-linear rewards $R_w(s, a)$

Input: expert trajectories $\tau_e \sim \pi_{expert}$ where $\tau_e = (s_1, a_1, s_2, a_2, ...)$

Initialize weights w at random

Repeat until stopping criterion

Expert feature expectation: $E_{\pi_{expert}}[\nabla_{\mathbf{w}}R_{\mathbf{w}}(\tau_e)] = \frac{1}{|data|}\sum_{\tau_e \in data} \nabla_{\mathbf{w}}R_{\mathbf{w}}(\tau_e)$

Model feature expectation:

Sample *n* trajectories: $\tau \sim q(\tau)$

$$E_{\mathbf{w}}[\nabla_{\mathbf{w}}R_{\mathbf{w}}(\tau)] = \frac{1}{n}\sum_{\tau} \frac{P_{\mathbf{w}}(\tau)}{q(\tau)} \nabla_{\mathbf{w}}R_{\mathbf{w}}(\tau)$$

Gradient: $\nabla_{\mathbf{w}} LL = E_{\pi_{expert}} [\nabla_{\mathbf{w}} R_{\mathbf{w}}(\tau)] - E_{\mathbf{w}} [\nabla_{\mathbf{w}} R_{\mathbf{w}}(\tau)]$

Update model: $\mathbf{w} \leftarrow \mathbf{w} + \alpha \nabla_{\mathbf{w}} LL$

Return w

Policy Computation

Two choices:

- 1) Optimize policy based on $R_{\mathbf{w}}(s,a)$ with favorite RL algorithm
- 2) Compute policy induced by $P_{\mathbf{w}}(\tau)$.

Induced policy: probability of choosing a after s in trajectories Let (s, a, τ) be a trajectory that starts with s, a and then continues with the state action-pairs of τ

$$\pi_{\mathbf{w}}(a|s) = P_{\mathbf{w}}(a|s)$$

$$= \frac{\sum_{\tau} P_{\mathbf{w}}(s,a,\tau)}{\sum_{a',\tau'} P_{\mathbf{w}}(s,a',\tau')}$$

$$= \frac{\sum_{\tau} e^{R_{\mathbf{w}}(s,a) + \gamma R_{\mathbf{w}}(\tau)}}{\sum_{a',\tau'} e^{R_{\mathbf{w}}(s,a') + \gamma R_{\mathbf{w}}(\tau')}}$$

Demo: Maximum Entropy IRL

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy optimization. *ICML*.

