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25% death Septic Shockl!!

Sepsis is infection which leads to life-threatening acute organ dysfunction.

Treatment of sepsis depends highly on the condition of patient and currently
there are no tool for this highly personalized treatment.

[1] Rhee C, Klompas M. Sepsis trends: increasing incidence and decreasing mortality, or changing denominator?. J Thorac Dis. 2020;12(Suppl 1):S89-S100.



Two challenges in sepsis treatment

e Management of the intravenous (IV) fluids

Too much will lead to organ failure whereas too less will not retain the capillary volume.

° Management of the vVasopressors

Too much will lead to heart failure whereas too less will not correct the heart activity.



MDP has been used to model the optimal trajectory

A policy iteration approach has been used to identify the optimal amount of
IV fluid and vasopressors in any patient state.



Two dataset has been used for training and testing phase

o MIMIC-III
o 17083 patients
o eRi

o 79073 patients

The dataset has been filtered out based on,

SOFA score

Sample Collection time

Sepsis type

Availability of age and mortality information



48 variable defines a patient’s state

Patient state contains

Demographics

Vital Sign

Lab result

Amount of fluid , vasopressor received
Fluid balance

Duration of a patient stay in hospital is considered as the trajectory.



Goal of RL agent is optimization of mortality

Two conditions for end of trajectory

e Hospital Mortality: The patient died during the stay in hospital

e 90D Mortality: The patient died between 0 and 90" day of surgery.

Reward = -100 if the patient died at the end of trajectory

else
100
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Clinicians policy was evaluated using Q function

Q"(s,a) = Q*(s,a) +a-(r+vy-Q"(s’,a)—-Q"(s, a))
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Off Policy Evaluation (OPE)

Two approaches for OPE

e Model based evaluation
o Estimation bias
o Availability of data
e Importance sampling
o High variance



Weighted Importance Sampling (WIS) is used for OPE

The data is generated by a different policy (Clinician policy)

We want to estimate the expectation of Al policy on that data
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Weighted Importance Sampling (WIS) is used for OPE

WIS decreases variance with possibility of increased bias

o = k=1 PRYE
7 ZZ=1 Pk
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Best Al policy is better than clinician policy
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Best Al policy is better than clinician policy
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Mortality risk is inversely related to return of actions
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Al suggests low amount IV and high amount vasopressors
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Al policy leads to low mortality rate

Mortality

0.8

0.6

0.4}

Intravenous fluids

L 1 J

1 1 1 L 1

b4

o L 1 1 L
OSSO TSSO
PILSL P " PRSESP

7/

Averane dnse exress ner natient

Mortality

Vasopressor

0.6

0.4

0.2 F

0 1 1 L 1 l 1 1 1 L J

AR PV O TP e?
G i TS e Sl L

Average dose excess per patient



Al policy enabled personalized treatment for sepsis




