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25% of ICU death is associated with Septic Shock[1]

Sepsis is infection which leads to life-threatening acute organ dysfunction.

Treatment of sepsis depends highly on the condition of patient and currently 
there are no tool for this highly personalized treatment.

[1] Rhee C, Klompas M. Sepsis trends: increasing incidence and decreasing mortality, or changing denominator?. J Thorac Dis. 2020;12(Suppl 1):S89-S100. 



Two challenges in sepsis treatment

● Management of the intravenous (IV) fluids

Too much will lead to organ failure whereas too less will not retain the capillary volume.

● Management of the vasopressors

Too much will lead to heart failure whereas too less will not correct the heart activity.



MDP has been used to model the optimal trajectory
 A policy iteration approach has been used to identify the optimal amount of 
IV fluid and  vasopressors in any patient state.



Two dataset has been used  for training and testing phase

● MIMIC-III
○ 17083 patients

● eRi
○ 79073 patients

The dataset has been filtered out based on,

● SOFA score
● Sample Collection time
● Sepsis type
● Availability of age and mortality information



48 variable defines a patient’s state
Patient state contains

● Demographics
● Vital Sign
● Lab result
● Amount of fluid , vasopressor received
● Fluid balance

Duration of a patient stay in hospital is considered  as the trajectory.



Goal of RL agent is optimization of mortality
Two conditions for end of trajectory

● Hospital Mortality: The patient died during the stay in hospital

● 90D Mortality: The patient died between 0 and 90th day of surgery.

Reward =   -100 if the patient died at the end of trajectory
else

100
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On policy evaluation is dangerous in this use case



Off Policy Evaluation (OPE)
Two approaches for OPE

● Model based evaluation
○ Estimation bias
○ Availability of data

● Importance sampling
○ High variance
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Weighted Importance Sampling (WIS) is used for OPE
WIS decreases variance with possibility of increased bias
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Best AI policy is better than clinician policy
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Mortality risk is inversely related to return of actions





AI suggests low amount IV and high amount vasopressors



AI policy leads to low mortality rate



AI policy enabled personalized treatment for sepsis

Personalized model for treatment 
of sepsis.

Justification and interpretation of AI 
policy based on knowledge in 

medical science.

Evaluation of AI and clinician policy.


