Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

AUTHORS:

RYAN LOWE, YI WU, AVIV TAMAR, JEAN HARB, PIETER ABBEEL, IGOR MORDATCH

Cooperative Behaviors

Many RL tasks require cooperation with other agents:

- Multi-robot control
- Modelling communication & language
- Multiplayer games
- Analyzing social dilemmas

Issues with Classic RL

Other agents are constantly changing

This causes two problems:

- 1. The environment is not stationary, so we can't effectively replay past experiences
- 2. For competitive tasks, your opponent is constantly changing, which causes instability

New Contributions

A centralized critic with access to all the actors

Agents learn approximations to other agents

Train an ensemble of policies all at once

Multi-Agent Actor Critic

Some Intuition

The reason multi-agent setups are hard is because predicting the next state requires predicting the actions of all other agents

What if we just tell each agent the actions of all others?

- Predicting the next state becomes much easier
- We don't need to keep updating our prediction function as the other agents change policy

Multi-Agent Actor Critic

- Give each agent's Q-function the actions of every other agent as part of its input
- The state transition function observed by one agent no longer depends on the policy of each other agent

The environment is now stationary

Algorithm Details

Updating the actor:

$$\nabla_{\theta_i} J(\boldsymbol{\mu}_i) = \mathbb{E}_{\mathbf{x}, a \sim \mathcal{D}} [\nabla_{\theta_i} \boldsymbol{\mu}_i(a_i | o_i) \nabla_{a_i} Q_i^{\boldsymbol{\mu}}(\mathbf{x}, a_1, ..., a_N) |_{a_i = \boldsymbol{\mu}_i(o_i)}],$$

Updating the critic:

$$\mathcal{L}(\theta_i) = \mathbb{E}_{\mathbf{x},a,r,\mathbf{x}'}[(Q_i^{\boldsymbol{\mu}}(\mathbf{x},a_1,\ldots,a_N) - y)^2], \quad y = r_i + \gamma Q_i^{\boldsymbol{\mu}'}(\mathbf{x}',a_1',\ldots,a_N')\Big|_{a_j' = \boldsymbol{\mu}_j'(o_j)},$$

Algorithm Details

Updating the actor:

$$\nabla_{\theta_i} J(\boldsymbol{\mu}_i) = \mathbb{E}_{\mathbf{x}, a \sim \mathcal{D}} [\nabla_{\theta_i} \boldsymbol{\mu}_i(a_i | o_i) \nabla_{a_i} Q_i^{\boldsymbol{\mu}}(\mathbf{x}, a_1, ..., a_N) |_{a_i = \boldsymbol{\mu}_i(o_i)}],$$

Updating the critic:

$$\mathcal{L}(\theta_i) = \mathbb{E}_{\mathbf{x},a,r,\mathbf{x}'}[(Q_i^{\boldsymbol{\mu}}(\mathbf{x},a_1,\ldots,a_N) - y)^2], \quad y = r_i + \gamma Q_i^{\boldsymbol{\mu}'}(\mathbf{x}',a_1',\ldots,a_N')|_{a_j' = \boldsymbol{\mu}_j'(o_j)}$$

This requires knowing the exact policy of every other agent

Inferring Policies of Other Agents

Why do we need this?

In a standard reinforcement learning training environment, we always know the policies of other agents

When do we need to infer policies?

- Distributed training with limited bandwidth
- Modelling individual learning
- Learning alongside a human

We wish we knew the other agents' policies

Train a neural network to learn their policies!

When in doubt, just add more networks

Solution

Each agent trains another network to model the actions of each other agent in the scene

- With a small number of agents this works very well
- This requires a quadratic number of networks, so it can be slow with a large number of agents

Agents with Policy Ensembles

Issues with Competitive Tasks

You're training two agents to play Rock-Paper-Scissors

- Opponent starts out usually playing Rock
- You learn to usually play Paper
- Opponent learns to usually play Scissors
- You learn to usually play Rock
- Opponent learns to usually play Paper

(and so on)

Stable Training with Ensembles

We learn a strategy that's good against our current opponent, but that might not be good in general

Solution: learn against many opponents at once
Train an ensemble of K different sub-policies
Pick a random policy for each episode
Keep the other policies in our replay buffer

Experiments and Results

Multi-Agent Actor Critic vs. Baseline

Ensemble vs. Single

Cooperative Environment

There are two agents, and three squares. Each episode, one square is marked as the right one, and both agents win if the second agent moves to the right square.

- The first agent can only see which square was picked
- The second agent can only see where the squares are
- The first agent can send messages to the second

Multi-Agent Actor Critic vs. Others

True Policies vs. Inferred Policies

Conclusion

Pros:

Significantly improves multi-agent training

Applies to all kinds of cooperative and competitive tasks

Ensemble training gives another improvement

Cons:

Doesn't apply to tasks with variable numbers of agents

Doesn't scale to a large number of agents

References

Lowe, Ryan, et al. <u>Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments</u>. Advances in Neural Information Processing Systems 30 (2017): 6379-6390.