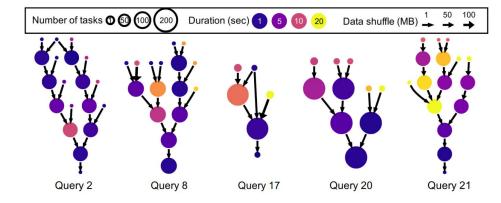
Learning Scheduling Algorithms for Data Processing Clusters

Authors: Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, Mohammad Alizadeh

Presenter: Aruth Kandage

Background

- Data processing in distributed compute clusters using systems such as Hive, Spark-SQL and DryadLINQ
- DAG-structured compute jobs
- Graph nodes are called *stages* each with a number of *tasks*
- Graph edges indicate data dependencies
- Cluster scheduler assigns tasks to executors in the cluster



Motivation

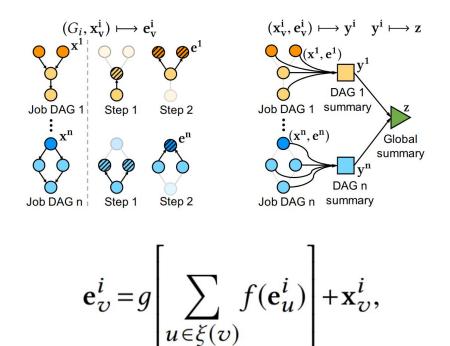
- Efficient scheduling can save millions of dollars at scale!
- Challenge: Large amount of input information
- Challenge: Large space of possible schedules
- Challenge: Online arrival of jobs to the cluster
- Common to run same job multiple times in commercial clusters

Decima Cluster Scheduler

- RL agent learns scheduling policy
- Graph neural network learns to compute embeddings from input job graph
- Policy network makes scheduling decisions
- Offline training in simulated environment

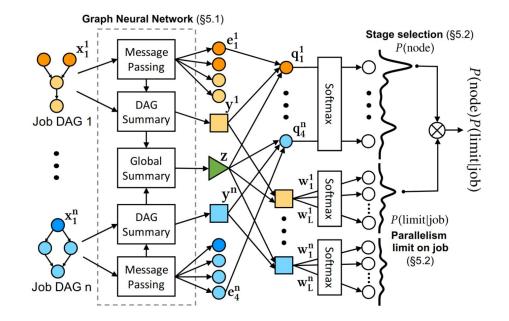
Graph Neural Network

- Job represented as a DAG
- Stages are nodes in the graph each with a vector x_v^i of stage attributes
- GNN computes an embedding e_v^i for each stage
- GNN computes summary embedding \mathcal{Y}^i for each job DAG
- GNN computes summary embedding \mathcal{Z} for all jobs



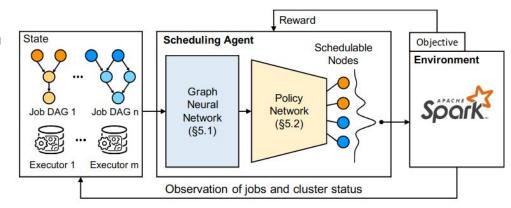
Policy Network

- Policy network scores each embedding
- One score q_v^\imath is used to select node/stage to schedule
- Another score w_l^i is used to select parallelism limit for job



Scheduling

- Overall running the agent once will produce a tuple (v, l) indicating the stage to schedule and its job parallelism limit
- Agent is asked to make a scheduling decision whenever there are free executors in the cluster



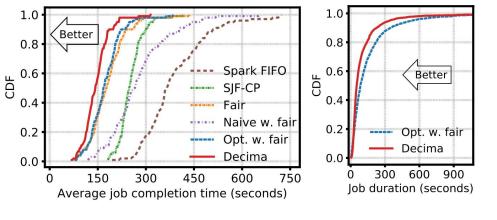
Offline Training

- RL agent trained in a simulator of Spark cluster using workload traces
- Reward function applies a penalty based on number of active jobs
- Train using policy gradient (REINFORCE)
- Train multiple episodes using same job arrival sequence
- Reduce policy gradient variance by subtracting baseline value b_k
- Increase the episode length as training progresses

Algorithm 1 Policy gradient method used to train Decima.

- 1: for each iteration do
- 2: $\Delta \theta \leftarrow 0$
- 3: Sample episode length $\tau \sim \text{exponential}(\tau_{\text{mean}})$
- 4: Sample a job arrival sequence
- 5: Run episodes i = 1, ..., N: $\{s_1^i, a_1^i, r_1^i, ..., s_{\tau}^i, a_{\tau}^i, r_{\tau}^i\} \sim \pi_{\theta}$
- 6: Compute total reward: $R_k^i = \sum_{k'=k}^{\tau} r_{k'}^i$
- 7: **for** k = 1 to τ **do**
- 8: compute baseline: $b_k = \frac{1}{N} \sum_{i=1}^{N} R_k^i$
- 9: **for** i = 1 to *N* **do**
- 10: $\Delta \theta \leftarrow \Delta \theta + \nabla_{\theta} \log \pi_{\theta}(s_k^i, a_k^i)(R_k^i b_k)$
- 11: end for
- 12: end for
- 13: $\tau_{\text{mean}} \leftarrow \tau_{\text{mean}} + \epsilon$
- 14: $\theta \leftarrow \theta + \alpha \Delta \theta$
- 15: end for

Evaluation (TPC-H)

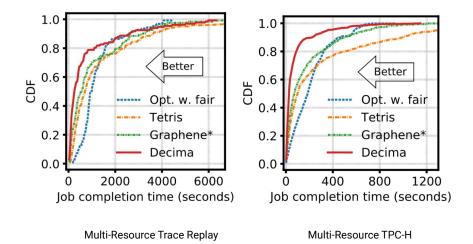


- Batch jobs Decima has 21% lower average JCT (Job Completion Time)
- Continuous jobs Decima has 29% lower average JCT (Job Completion Time)
- Up 2x lower average JCT vs. nearest heuristic when cluster under heavy load
- Decima completes small jobs faster with correct assignment of executors to task

TPC-H Batch Job Arrival

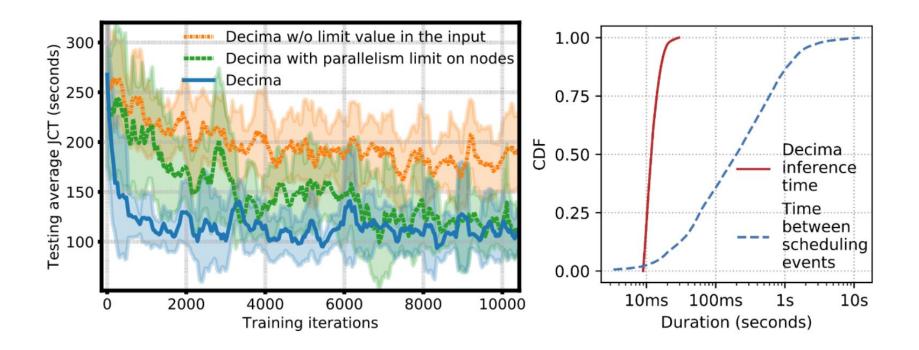
TPC-H Continuous Job Arrival

Evaluation (Multi-Resource Scheduling)



- Multi-resource setting: jobs have both CPU and memory demands
- Multiple classes of executors with different CPU and memory resources
- Decima has 32% lower average JCT vs. nearest algorithm (Graphene)
- Decima learns to trade-off cluster resource fragmentation for lower JCT

Evaluation



Evaluation

Setup (IAT: interarrival time)	Average JCT [sec]
Opt. weighted fair (best heuristic)	91.2 ± 23.5
Decima, trained on test workload (IAT: 45 sec)	65.4 ± 28.7
Decima, trained on anti-skewed workload (IAT: 75 sec)	104.8 ± 37.6
Decima, trained on mixed workloads	82.3 ± 31.2
Decima, trained on mixed workloads with interarrival time hints	76.6 ± 33.4

Future Work

- Robustness
- Online Training
- Different Learning Objectives (e.g. SLA for job completion time)
- Pre-emption of Jobs
- Other applications such as database query optimization

Summary

- Decima demonstrates RL agent which outperforms heuristics in distributed job scheduling
- Novel use of graph neural network and policy network for scheduling decisions
- Offline training in simulated environment but can generalize well to real workloads

Thank you!