Learning Scheduling Algorithms for
Data Processing Clusters

Authors: Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja

Venkatakrishnan, Zili Meng, Mohammad Alizadeh

Presenter: Aruth Kandage

Background

Data processing in distributed compute
clusters using systems such as Hive,
Spark-SQL and DryadLINQ

DAG-structured compute jobs

Graph nodes are called stages each with a
number of tasks

Graph edges indicate data dependencies
Cluster scheduler assigns tasks to executors
in the cluster

<<

SparK™ saL

Numberoftasksd)@ Duration (sec) ° e @ 20 Data shuffle (MB)

1 50 100
- = =)

3

Query 2 Query 8 Query 17 Query 20

N

;W

~e-eC "

Query 21

Motivation

Efficient scheduling can save millions of dollars at scale!
Challenge: Large amount of input information

Challenge: Large space of possible schedules

Challenge: Online arrival of jobs to the cluster

Common to run same job multiple times in commercial clusters

Decima Cluster Scheduler

RL agent learns scheduling policy

Graph neural network learns to compute embeddings from input job graph
Policy network makes scheduling decisions

Offline training in simulated environment

Graph Neural Network

Job represented as a DAG

Stages are nodes in the graph each with a
vector :E of stage attributes

GNN computes an embedding 6 for each
stage

GNN computes summary embedding y for
each job DAG

GNN computes summary embedding 2 for
all jobs

(Gi,x\) —> el (x,el)r—y ylroz
Job DAG 1 Step 1 Step 2

o x" en (X", Global
@ ;‘te summary

Job DAG n Step 1 Step 2 JobDAG n summary

el=g| > flel)|+xi,
(ueé(v)

Policy Network

e Policy network scores each embedding Graph Neural Network (§5.1)
7 . TR ' 1 Stage selection (§5.2)
| ! €
e Onescore @, is used to select node/stage to x| [esmage | 1 P(node)
schedule " passing 0O — "
e Another score w; is used to select \ y gl 3
. . . . DAG &
parallelism limit for job A P 3| S
' of ¥7F
[] —
. | Global =
° : Summary o L) 8-
: f 02— 7
2 | DAG x \‘O: P(limit|job)
/ Summary Parallelism
| ¥ @ _»(O\ limit on job
: _,() 5.2
\:\‘ Message = 5’" : 572
JobDAGn | | Passing n * N ~O

Scheduling

Overall running the agent once will produce a
tuple (U, l)indicating the stage to schedule
and its job parallelism limit

Agent is asked to make a scheduling decision
whenever there are free executors in the
cluster

APACME&

l Reward |
State i jecti
Scheduling Agent Schediitie Objective |
® @ .\ Nodes Environment
O
O Graph
Neural
JobDAG1 Job DAG n o Spr
[c&—=> (85.1)
oon =y
T AR O

Executor 1 Executor m

!

Observation of jobs and cluster status

Offline Training

RL agent trained in a simulator of Spark
cluster using workload traces

Reward function applies a penalty based on
number of active jobs

Train using policy gradient (REINFORCE)
Train multiple episodes using same job arrival
sequence

Reduce policy gradient variance by
subtracting baseline value

Increase the episode length as training
progresses

Algorithm 1 Policy gradient method used to train Decima.

1: for each iteration do

2
3:
4:
)

AG—0
Sample episode length 7 ~ exponential(zmean)
Sample a job arrival sequence
Run episodes i=1,...,N:
{si,ai ,rl",...,si aklriy~mp
Compute total reward: RL = ZlTa: B r;;,
fork=1tordo
compute baseline: by = & XN ")
fori=1to Ndo
AO — A9+V910g”9(sli<’a;;)(R2 -by)
end for
end for
Tmean <~ Tmean +€

0 —0+ald

15: end for

CDF

Evaluation (TPC-H)

* ====_Spark FIFO
s SJF-CP
< Fair
----- = Naive w. fair
------ Opt. w. fair
—— Decima
0 150 300 450 600 750

Average job completion time (seconds)

TPC-H Batch Job Arrival

CDF

0.2 ffuuma

Opt. w. fair
—— Decima

0.0

0 300 600 900
Job duration (seconds)

TPC-H Continuous Job Arrival

Batch jobs - Decima has 21% lower average
JCT (Job Completion Time)
Continuous jobs - Decima has 29% lower
average JCT (Job Completion Time)

Up 2x lower average JCT vs. nearest heuristic
when cluster under heavy load

Decima completes small jobs faster with
correct assignment of executors to task

Evaluation (Multi-Resource Scheduling)

1.0 1 s =
0.8 1
w 061 /;
8 ; Opt f i
0.44/i pt. w. fair
: : === Tetris
0.2 1 ",i' - Graphene*
A —— Decima
L
0 2000 4000 6000

Job completion time (seconds)

Multi-Resource Trace Replay

Job completion time (seconds)

4 ISR
g -

c ’

T o

I

T
“‘“ - - -

|| Opt. w. fair
=== Tetris

.: - S— - Graphene*

] —— Decima

0 400 800 1200

Multi-Resource TPC-H

Multi-resource setting: jobs have both CPU
and memory demands

Multiple classes of executors with different
CPU and memory resources

Decima has 32% lower average JCT vs.
nearest algorithm (Graphene)

Decima learns to trade-off cluster resource
fragmentation for lower JCT

Testing average JCT (seconds)

Evaluation

3009

N
(%)
o

2001

150

100

uuuuu

Decima w/o limit value in the input
Decima with parallelism limit on nodes

= Decima

0

2000

4000 6000
Training iterations

8000

10000

1.00 -
0.75 -

a

5 0.50 1

0:25+4

0.00 A

-

7 time
/ Time

/ Decima
/ inference

/ between

’ scheduling
events

10ms 100ms 1s

Duration (seconds)

10s

Evaluation

Setup (IAT: interarrival time) | Average JCT [sec]
Opt. weighted fair (best heuristic) | 91.2+23.5
Decima, trained on test workload (IAT: 45sec) | 65.4+28.7
Decima, trained on anti-skewed workload (IAT:75sec) | 104.8+37.6
Decima, trained on mixed workloads | 82.3+31.2

Decima, trained on mixed workloads with interarrival time hints

76.6+33.4

Future Work

Robustness

Online Training

Different Learning Objectives (e.g. SLA for job completion time)
Pre-emption of Jobs

Other applications such as database query optimization

Summary

e Decima demonstrates RL agent which outperforms heuristics in distributed job scheduling
e Novel use of graph neural network and policy network for scheduling decisions
e Offline training in simulated environment but can generalize well to real workloads

