Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation

Yuan Li, Xiaodan Liang, Zhiting Hu, Eric P. Xing — NeurIPS 2018

CS885 Fall 2021 - Reinforcement Learning Presenter: **Gustavo Sutter** (gsutterp@uwaterloo.ca)

Report generation

- <u>Goal</u>: generate long and topic-coherent stories or reports to describe visual contents
- <u>Challenges</u>:
 - The report must be a long narrative with multiple sentences, having plausible logic and consistent topics
 - There is a presumed content coverage and specific terminology, both depending on the task at hand

Medical image reports

Comparison:

Indication: 60-year-old male with seizure, ethanol abuse

Findings: The heart size and mediastinal contours appear within normal limits. There is blunting of the right lateral costophrenic sulcus which could be secondary to a small effusion versus scarring. No focal airspace consolidation or pneumothorax. No acute bony abnormalities.

Impression: Blunting of the right costophrenic sulcus could be secondary to a pleural effusion versus scarring.

Why not use caption generation models?

- Most of the sentences present in medical reports are normal findings (low variance of language)
 - Retrieval-based systems work well for those sentences
- Abnormal findings are rare and very diverse, but very important
 - Text generation models fail to deal capture the diversity
 - Models based only on text generation tend to focus on generating sentences that look natural, but not necessarily supported by the visual evidences

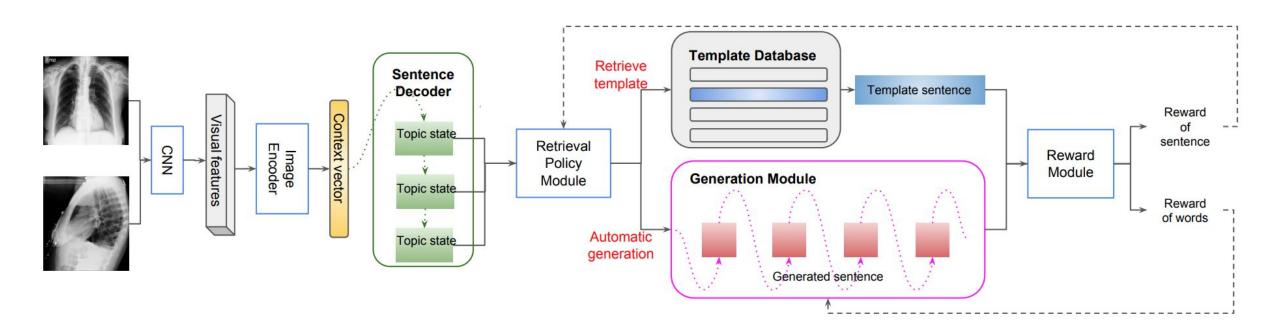
HRGR-Agent

- Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent)
- Combines traditional retrieval-based approaches with modern text generation
- Two main modules:
 - Retrieval policy module
 - Generation module
- Modules are jointly trained using RL

HRGR-Agent: overview

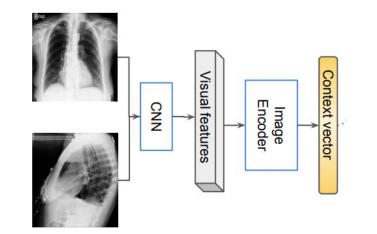
- Given a set of medical image $\mathbf{I} = \{I_j\}_{j=1}^K$ the goal is to generate a sequence $(\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_M))$ $\mathbf{y}_i = (y_{i,1}, y_{i,2}, \dots, y_{i,N})$
- From the extracted features of the images the model generates a topic state for each sentence
- Using the topic state the module can either choose a template sentence or generate a novel sentence from scratch
 - The template databas T is extracted from the training corpus
- Supervision comes on both sentence-level and word-level.

HRGR-Agent: overview



HRGR-Agent: Image Encoder

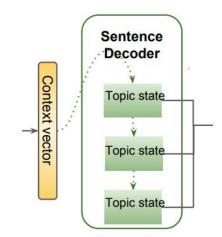
- Given a set of images $\{I_j\}_{j=1}^K$ a CNN is used to extract their feat $\{r_j\}_{j=1}^K$
- The images features are averaged and passed to a fully-connected layer to get the contexh^{*}vector



HRGR-Agent: Sentence Decoder

Stacked RNN layers that take the context vechor and generate a sequence (q_i opic states

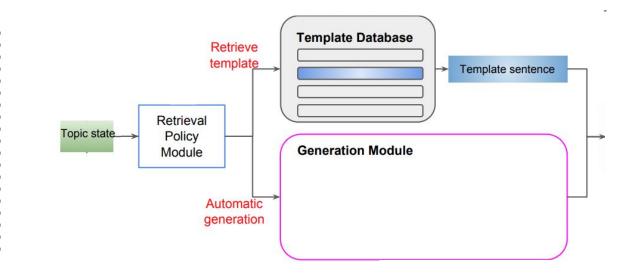
$$\begin{aligned} \mathbf{c}_{i}^{s} &= F_{\text{attn}}^{s}(\mathbf{h}^{v}, \mathbf{h}_{i-1}^{s}) \\ \mathbf{h}_{i}^{s} &= F_{\text{RNN}}^{s}(\mathbf{c}_{i}^{s}, \mathbf{h}_{i-1}^{s}) \\ \mathbf{q}_{i} &= \sigma(\mathbf{W}_{q}\mathbf{h}_{i}^{s} + \mathbf{b}_{q}) \\ z_{i} &= \text{Sigmoid}(\mathbf{W}_{z}\mathbf{h}_{i}^{s} + \mathbf{b}_{z}) \end{aligned}$$



HRGR-Agent: Retrieval Policy Module

- Given each topic stat q_i the retrieval policy module has two options:
 - Retrieve a template sentence frcTn
 - Activate the generation module to produce a sequence of words

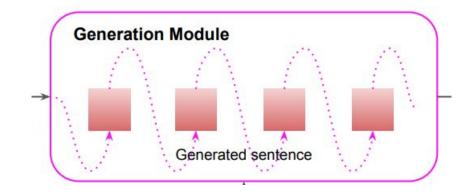
$$\mathbf{u}_i = \operatorname{Softmax}(\mathbf{W}_u \mathbf{q}_i + \mathbf{b}_u)$$
$$m_i = \operatorname{argmax}(\mathbf{u}_i),$$



HRGR-Agent: Generation Module

• The generation module consists of usual RNNs with attention, generating new words conditioned on the context vector and the topic state

$$\begin{aligned} \mathbf{c}_{i,t}^g &= F_{\text{attn}}^g(\mathbf{h}^v, [\mathbf{e}_{i,t-1}; \mathbf{q}_i], \mathbf{h}_{i,t-1}^g) \\ \mathbf{h}_{i,t}^g &= F_{\text{RNN}}^g([\mathbf{c}_{i,t}^g; \mathbf{e}_{i,t-1}; \mathbf{q}_i], \mathbf{h}_{i,t-1}^g) \\ \mathbf{a}_t &= \text{Softmax}(\mathbf{W}_y \mathbf{h}_{i,t}^g + \mathbf{b}_y) \\ y_t &= \operatorname{argmax}(\mathbf{a}_t) \\ \mathbf{e}_{i,t} &= \mathbf{W}_e \mathbb{O}(y_{i,t}), \end{aligned}$$



HRGR-Agent: Reward Module

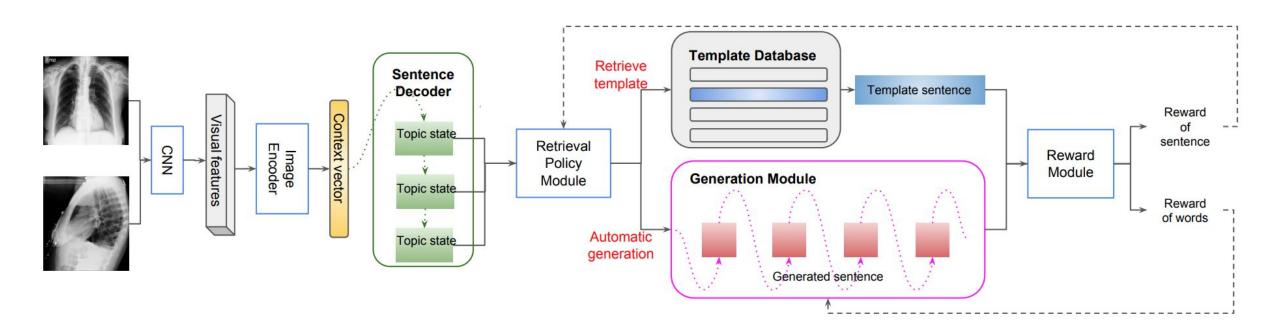
- Rewards are computed using the CIDEr metric
- Sentence-level reward

$$R_{sent}(\mathbf{y}_i) = f(\{\mathbf{y}_k\}_{k=1}^i, gt) - f(\{\mathbf{y}_k\}_{k=1}^{i-1}, gt)$$

Word-level reward

$$R_{word}(y_t) = f(\{y_k\}_{k=1}^t, \mathsf{gt}^s) - f(\{y_k\}_{k=1}^{t-1}, \mathsf{gt}^s)$$

HRGR-Agent: overview



HRGR-Agent: Hierarchical Reinforcement Learning

- The objective is maximize the reward of the produced sequences given the ground-truth report
- REINFORCE algorithm

$$\mathcal{L}(\theta) = -\mathbb{E}_{z,m,y}[R(\mathbf{Y}, \mathbf{Y}^*)]$$

$$\nabla_{\theta} \mathcal{L}(\theta) = -\mathbb{E}_{z,m,y}\left[\nabla_{\theta} \log p(z, m, y)R(\mathbf{Y}, \mathbf{Y}^*)\right]$$

$$= -\mathbb{E}_{z,m,y}\left[\sum_{i=1}^{\infty} \mathbb{1}(z_i < \frac{1}{2}|z_{i-1})\left(\nabla_{\theta_r} \mathcal{L}(\theta_r) + \mathbb{1}(m_i = 0|m_{i-1})\nabla_{\theta_g} \mathcal{L}(\theta_g)\right)\right]$$

HRGR-Agent: Hierarchical Reinforcement Learning

- Policy Upgrade for <u>Retrieval Policy Module</u>
 - Sentence-level

$$R^{r}(\mathbf{y}_{i}) = \sum_{j=0}^{\infty} \gamma^{j} R_{sent}(\mathbf{y}_{i+j})$$
$$\mathcal{L}(\theta_{r}) = -\mathbb{E}_{m_{i}}[R^{r}(m_{i}, m_{i}^{*})]$$
$$\nabla_{\theta_{r}} \mathcal{L}(\theta_{r}) = -\mathbb{E}_{m_{i}}[\nabla_{\theta_{r}} \log p(m_{i}|m_{i-1})R^{r}(m_{i}, m_{i}^{*})]$$

HRGR-Agent: Hierarchical Reinforcement Learning

- Policy Upgrade for <u>Generation Module</u>
 - Word-level

$$R^{g}(y_{t}) = \sum_{j=0}^{\infty} \gamma^{j} R_{word}(y_{t+j})$$
$$\mathcal{L}(\theta_{g}) = -\mathbb{E}_{y_{t}}[R^{g}(\mathbf{y}_{t}, \mathbf{y}_{t}^{*})]$$
$$\nabla_{\theta_{g}} \mathcal{L}(\theta_{g}) = -\mathbb{E}_{y_{t}}[\sum_{t=1}^{\infty} \nabla_{\theta_{g}} \log p(y_{t}|y_{t-1})R^{g}(y_{t}, y_{t}^{*})]$$

Experiments: Datasets

- Indiana University Chest X-Ray Collection (IU X-Ray)
 - 7,470 images paired with their corresponding reports
 - 1185 unique tokens
- CX-CHR
 - 35,236 patients (no more than 2 photos for each)
 - 1282 unique tokens
- For each dataset split data into training (70%), validation (20%) and testing (10%)
- Model was trained to predict the findings section of each report

Experiments: Template Database

- Sentences are selected based on their frequency in the training set
- Candidates that express the same meaning but have little linguistic variation are grouped
 - Only the most frequent sentence of each group will be retrieved by the models
 - Does introduce error in the results, but authors claim that is negligible

Experiments: Evaluation Metrics

- Automatic metrics
 - CIDEr
 - BLEU
 - ROUGE
- Abnormality detection (select 10 most frequency medical abnormalities)
 - Precision and average false positive (AFP)
- Human evaluation
 - Mechanical Turk surveys to decide which method better matches with the ground-truth

Experiments: Baselines

- Image captioning models
 - CNN-RNN, LRCN, AdaAtt, Att2in
- Previous work on medical imaging reports
 - CoAtt (uses a different feature extractor)
- Variations of their method
 - Generation no templates and no RL
 - HRG no RL
 - Retrieval same as HRGR-Agent but masking the generated sentences

Experiments: Results

Dataset	Model	CIDEr	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE
CX-CHR	CNN-RNN [34]	1.580	0.590	0.506	0.450	0.411	0.577
	LRCN [9]	1.588	0.593	0.508	0.452	0.413	0.577
	AdaAtt [23]	1.568	0.588	0.503	0.446	0.409	0.575
	Att2in [28]	1.566	0.587	0.503	0.446	0.408	0.576
	Generation	0.361	0.307	0.216	0.160	0.121	0.322
	Retrieval	2.565	0.535	0.475	0.437	0.409	0.536
	HRG	2.800	0.629	0.547	0.497	0.463	0.588
	HRGR-Agent	2.895	0.673	0.587	0.530	0.486	0.612
IU X-Ray	CNN-RNN [34]	0.294	0.216	0.124	0.087	0.066	0.306
	LRCN [9]	0.284	0.223	0.128	0.089	0.067	0.305
	AdaAtt [23]	0.295	0.220	0.127	0.089	0.068	0.308
	Att2in [28]	0.297	0.224	0.129	0.089	0.068	0.308
	CoAtt* [16]	0.277	0.455	0.288	0.205	0.154	0.369
	HRGR-Agent	0.343	0.438	0.298	0.208	0.151	0.322

Table 2: Automatic evaluation results on CX-CHR (upper part) and IU X-Ray Datasets (lower part). BLEU-n denotes BLEU score uses up to n-grams.

Experiments: Results

Dataset	CX-CHR			IU X-Ray			
Models	Retrieval	Generation	HRGR-Agent	CNN-RNN [34]	CoAtt [16]	HRGR-Agent	
Prec. (%)	14.13	27.50	29.19	0.00	5.01	12.14	
AFP	0.133	0.064	0.059	0.000	0.019	0.043	
Hit (%)	—	23.42	52.32	-	28.00	48.00	

Table 3: Average precision (Prec.) and average false positive (AFP) of medical abnormality terminology detection, and human evaluation (Hit). The higher Prec. and the lower AFP, the better.

Conclusion

- The paper introduces a model that bridges tradicional retrieval-based approaches and modern sequence generating methods
- For each sentence a retrieval policy module determines if a template should be retrieved or a novel sentence should be generate from scratch
- The model is trained using RL, defining rewards on word and sentence levels
- HRGR-Agent achieves the state-of-the-art in two medical image report datasets

UNIVERSITY OF WATERLOO

Thank you!

PAGE 24