Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning with Application to Autonomous Driving

04/11/21

Authors: Zheng Wu, Liting Sun, Wei Zhan, Chenyu Yang, and Masayoshi Tomizuka Presented by: Xinyi Yan

Introduction

- What is the paper about ?
 - Autonomous driving
 - Learn driving policies
 - What to optimize ?
 - Extract what human drivers try to optimize from real traffic data

Introduction

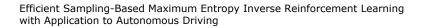
- What is the problem tackled ?
 - Extract what human drivers try to optimize from real traffic data
 - Challenges:
 - high dimensional continuous space with long horizons
 - Vehicle kinematics: distance, speed, acceleration. etc
 - Uncertainties
 - Interpretable, generalizable

Introduction

- What is the solution proposed ?
 - Sampling-based maximum entropy IRL (SMIRL)

Background

- The problem tackled
 - Extract what human drivers try to optimize from real traffic data
 - Challenges:
 - high dimensional continuous space with long horizons
 - Vehicle kinematics: distance, speed, acceleration. etc
 - Uncertainties
 - Interpretable, generalizable
 - Learn reward functions from real driving data
 - The principle of maximum entropy
 - Trajectory sampling



Background

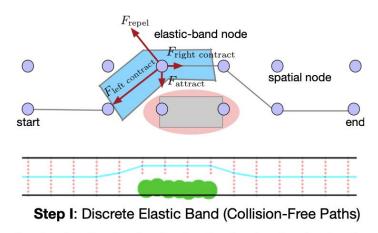
- Necessary background
 - Principle of maximum entropy
 - Maximum Entropy Inverse Reinforcement Learning
 - Assumptions:
 - the reward function is roughly consistent

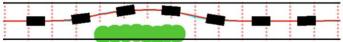
- SMIRL at a high level
 - A set of demonstrations: $\Xi_D = \{\xi_i\}$
 - $R(\xi, \theta) = \theta^T \mathbf{f}(\xi)$
 - Boltzmann rationality: $P(\xi, \theta) \propto e^{\beta R(\xi, \theta)}$

$$P(\Xi_{D}|\theta) = \prod_{i=1}^{M} \frac{e^{\beta R(\xi_{i},\theta)}}{\int_{\tilde{\xi}\in\Phi_{\xi_{i}}} e^{\beta R(\tilde{\xi},\theta)} d\tilde{\xi}} = \prod_{i=1}^{M} \frac{1}{Z_{\xi_{i}}} e^{\beta R(\xi_{i},\theta)}$$
$$\theta^{\star} = \arg\max_{\theta} \frac{1}{M} \log P(\Xi_{D}|\theta) = \arg\max_{\theta} \frac{1}{M} \sum_{i=1}^{N} \log P(\xi_{i}|\theta)$$
$$Z_{\xi_{i}} \approx \sum_{m=1}^{K} e^{\beta R(\tau_{m}^{i},\theta)}$$

Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning with Application to Autonomous Driving

- SMIRL at a high level
 - The Sampler
 - Discrete Elastic Band
 - Path Smoothing
 - Two-step Speed Sampling





Step II: Path Smoother via Pure-Pursuit Control

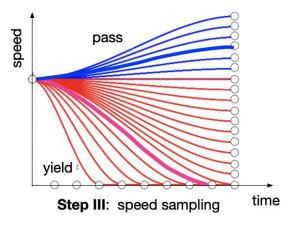


Fig. 1: The overview of the sampling process.

- SMIRL at a high level
 - Re-Distribution of Samples

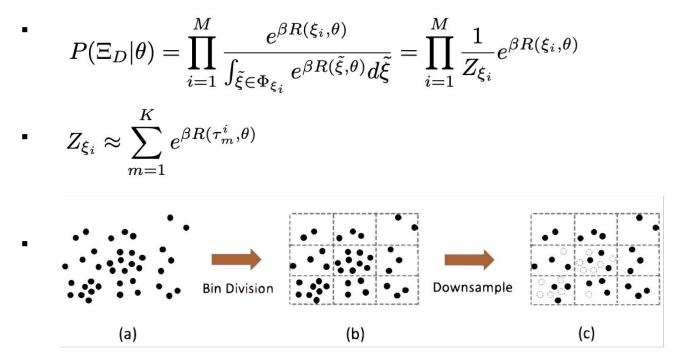


Fig. 2: Re-distribution of samples

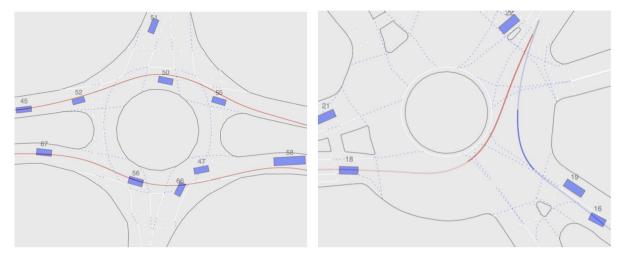
Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning with Application to Autonomous Driving

• SMIRL at a high level

Algorithm 1: The Proposed Sampling-based Maximum Entropy IRL for Driving **Result:** optimized reward function parameters θ^* **Input:** The demonstration dataset $\mathcal{D}_M = \{\xi_i\}_{i=1:M}$, the convergence threshold ϵ and the learning rate α . 1 Initialize θ_0 , k = 0 and compute expected expert feature count $\overline{\mathbf{f}}(\mathcal{D}_M) = \frac{1}{M} \sum_{i=1}^{M} \mathbf{f}(\xi_i);$ 2 Generate the sample set $\mathcal{D}_s^0 = \{\tau_m^i\}_{m=1:K, i=1:M}$ using the sampler in Section II-B; 3 Re-distribute the samples according to their similarities as discussed in Section II-C, and generate a new sample set \mathcal{D}_s ; 4 Compute the initial expected feature count over all samples $\widetilde{\mathbf{f}}_0(\mathcal{D}_s) = rac{1}{M} \sum_{i=1}^M \widetilde{\mathbf{f}}_0(\xi_i) =$ $\frac{1}{M}\sum_{i=1}^{M}\frac{1}{K}\sum_{m=1}^{K}\frac{\exp R(\tau_m^i,\theta_0)}{\sum_{m=1}^{M}\exp R(\tau_m^i,\theta_0)}\mathbf{f}(\tau_m^i);$ 5 while $\|\overline{\mathbf{f}}(\mathcal{D}_M) - \mathbf{f}_k(\mathcal{D}_s)\|_2 > \epsilon$ do Update θ_k using gradient decent, i.e., 6 $\theta_{k+1} = \theta_k + \nabla_{\theta_k} L = \theta_k + \alpha(\overline{\mathbf{f}}(\mathcal{D}_M) - \widetilde{\mathbf{f}}(\mathcal{D}_s));$ Compute the expected feature count based on θ_{k+1} 7 over all samples $\widetilde{\mathbf{f}}_{k+1}(\mathcal{D}_s) = rac{1}{M}\sum_{i=1}^M \widetilde{\mathbf{f}}_{k+1}(\xi_i) =$ $\frac{1}{M}\sum_{i=1}^{M} \frac{1}{K}\sum_{m=1}^{K} \frac{\exp R(\tau_{m}^{i},\theta_{k+1})}{\sum_{m=1}^{M}\exp R(\tau_{m}^{i},\theta_{k+1})} \mathbf{f}(\tau_{m}^{i});$ k = k + 1;8 9 end 10 $\theta^* = \theta_k$;

- Advantages and disadvantages of the proposed solution compared to other work
 - Scale well in large-scale continuous domain with long horizons
 - Interpretable and generalizable features
 - Non-interactive features: Speed, longitudinal and lateral accelerations, etc
 - Interactive features: Future distance, etc
 - Less sensitive to either noise and feature selection
 - Need manually crafted features
 - Speed, Longitudinal and lateral accelerations, etc.

- Two types of driving scenarios
 - non-interactive driving when moving through the roundabout
 - interactive driving when moving through the roundabout



(a) The NID scenario with (b) The ID scenario with DR_USA_Roundabout_SR DR_USA_Roundabout_FT

Fig. 3: Two roundabout scenarios.

- Evaluation Metrics
 - Feature Deviation: $\mathcal{E}_{FD} = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{N_i} \frac{|\mathbf{f}(\xi_i^{gt}) \mathbf{f}(\xi_i^{pred})|}{\mathbf{f}(\xi_i^{gt})}$
 - Mean Euclidean distance: $\mathcal{E}_{MED} = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{N_i} ||\xi_i^{gt} \xi_i^{pred}||_2$
 - Probabilistic Metrics: $P(\xi|\theta, \{\mathcal{T}\}) = \frac{\exp(R(\xi, \theta))}{\exp(R(\xi, \theta)) + \sum_{i=1}^{M} \exp(R(\tau_i, \theta))}$

TABLE I: A summary of the IRL algorithms in the non-interactive driving scenario.

-	a_lon	j_lon	v_des	a_lat	MED	Win Count	Log Likelihood
Ours	0.16 ± 0.12	0.20 ± 0.15	0.09 ± 0.04	0.09 ± 0.03	0.21 ± 0.06	33	-238.98
Opt-IRL	0.19± 0.19	0.32 ± 0.19	0.13 ± 0.06	0.11 ± 0.03	0.29 ± 0.09	0	-398.93
CIOC	0.48 ± 0.42	0.23 ± 0.17	0.10 ± 0.07	0.06 ± 0.05	0.23 ± 0.09	0	-662.16
GCL					3.73 ± 1.95	0	-1377.65

TABLE II: A summary of the IRL algorithms in the interactive driving scenario.

	a_lon	j_lon	a_lat	v_des	fut_dis	fut_int_dis	MED	Win Count	Log Likelihood
Ours	$0.15\pm$	$0.54\pm$	$0.19\pm$	$0.034\pm$	$0.012\pm$	$0.032\pm$	$0.066\pm$	63	-515.97
	0.24	0.19	0.24	0.026	0.0078	0.045	0.038	05	
Opt-IRL	$0.69\pm$	$0.55\pm$	$0.20\pm$	$0.083\pm$	$0.021\pm$	$0.043\pm$	$0.14\pm$	4	-802.01
Opt-IKL	1.04	0.40	0.23	0.11	0.018	0.066	0.16		-002.01
CIOC	$0.42\pm$	$0.69\pm$	$0.26\pm$	$0.064~\pm$	$0.023\pm$	$0.045\pm$	0.14±	9	-595.27
CIUC	0.77	0.26	0.23	0.10	0.012	0.10	0.14	9	-393.27
GCL				20			1.53±	0	-1196.75
GCL		_					1.16	0	-1190.75

• Performance on Test Sets in Unseen Environments

TABLE IV: Generalization results of different IRL algorithms under the MED metric. The results are in meters.

d .	Seen NID	Unseen NID	Seen ID	Unseen ID
Ours	0.21	0.74	0.066	0.072
Opt-IRL	0.29	0.89	0.14	0.17
CIOC	0.23	0.90	0.14	0.16
GCL	3.73	46.70	1.53	4.69

TABLE V: Generalization results of different IRL algorithms under the probabilistic metric.

	Seen NID	Unseen NID	Seen ID	Unseen ID
Ours	-238.98	-399.85	-515.97	-571.60
Opt-IRL	-398.93	-472.51	-802.01	-870.72
CIOC	-662.16	-1153.74	-595.27	-621.13
GCL	-1377.65	-3140.24	-1196.75	-2898.64

Computation Complexity

TABLE VI: The time cost of the three algorithms for both non-interactive and interactive scenarios. Results are in minutes

	Ours	CIOC	Opt-IRL	GCL
Non-interactive	6	60	1800	40
Interactive	5	90	1260	30

• The Effect of Sample Re-Distribution

TABLE VII: Experiment results of the non-interactive scenario with and without the step of sample re-distribution

	a_lon	j_lon	v_des	a_lat	MED	Win Count	Log Likelihood
w/ sample re-distribution	0.16 ± 0.12	0.20 ± 0.15	0.09 ± 0.04	0.09 ± 0.03	0.21 ± 0.06	33	-238.982
w/o sample re-distribution	0.18 ± 0.10	0.30 ± 0.16	0.12 ± 0.05	0.11 ± 0.04	0.26 ± 0.08	0	-259.064

TABLE VIII: Experiment results of the interactive scenario with and without the step of sample re-distribution

	a_lon	j_lon	a_lat	v_des	fut_dis	fut_int_dis	MED	Win Count	Log Likelihood
w/ sample	0.14 ±	$0.53 \pm$	0.19 ±	$0.032 \pm$	$0.012 \pm$	$0.027~\pm$	$0.072 \pm$	76	-515.965
re-distribution	0.24	0.18	0.23	0.026	0.0074	0.044	0.043	/0	-313.903
w/o sample	$0.23 \pm$	$0.55~\pm$	$0.19 \pm$	$0.031 \pm$	$0.012~\pm$	$0.027~\pm$	$0.067 \pm$	0	557 207
re-distribution	0.53	0.18	0.23	0.028	0.0062	0.045	0.041	0	-557.307

Contribution

Proposed a sampling-based maximum entropy inverse reinforcement learning algorithm

- Efficient sampler and sample re-distribution
- Better generalization ability and converge significantly faster

Take home message

- Extract human behaviors from real traffic data
- The principle of maximum entropy
- A uniformed distribution of samples

Future Work

- General robotic systems with higher dimensions
- Explore better metrics other than the Euclidean distance

UNIVERSITY OF WATERLOO

FACULTY OF MATHEMATICS

Thank you

Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning with Application to Autonomous Driving