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Introduction

▪ What is the paper about ?

▪ Autonomous driving

▪ Learn driving policies

▪ What to optimize ?

▪ Extract what human drivers try to optimize from real traffic data
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Introduction

▪ What is the problem tackled ?

▪ Extract what human drivers try to optimize from real traffic data

▪ Challenges:

▪ high dimensional continuous space with long horizons

▪ Vehicle kinematics: distance, speed, acceleration. etc

▪ Uncertainties

▪ Interpretable, generalizable
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Introduction

▪ What is the solution proposed ?

▪ Sampling-based maximum entropy IRL (SMIRL)

Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning 
with Application to Autonomous Driving PAGE  4



Background

▪ The problem tackled

▪ Extract what human drivers try to optimize from real traffic data

▪ Challenges:

▪ high dimensional continuous space with long horizons

▪ Vehicle kinematics: distance, speed, acceleration. etc

▪ Uncertainties

▪ Interpretable, generalizable

▪ Learn reward functions from real driving data

▪ The principle of maximum entropy

▪ Trajectory sampling
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Background

▪ Necessary background

▪ Principle of maximum entropy

▪ Maximum Entropy Inverse Reinforcement Learning

▪ Assumptions:

▪ the reward function is roughly consistent
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Content

▪ SMIRL at a high level

▪ A set of demonstrations: 

▪  

▪ Boltzmann rationality:

▪  

▪  

▪
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Content

▪ SMIRL at a high level

▪ The Sampler

▪ Discrete Elastic Band

▪ Path Smoothing

▪ Two-step Speed Sampling
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Content

▪ SMIRL at a high level

▪ Re-Distribution of Samples

▪

 

▪  

 

▪
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Content

▪ SMIRL at a high level

▪
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Content

▪ Advantages and disadvantages of the proposed solution compared to other 

work

▪ Scale well in large-scale continuous domain with long horizons

▪ Interpretable  and generalizable features

▪ Non-interactive features: Speed, longitudinal and lateral accelerations, etc

▪ Interactive features: Future distance, etc

▪ Less sensitive to either noise and feature selection

▪ Need manually crafted features 

▪ Speed, Longitudinal and lateral accelerations, etc.

Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning 
with Application to Autonomous Driving PAGE  11



Empirical evaluation

▪ Two types of driving scenarios

▪ non-interactive driving when moving through the roundabout

▪ interactive driving when moving through the roundabout
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Empirical evaluation

▪ Evaluation Metrics

▪ Feature Deviation:

▪ Mean Euclidean distance: 

▪ Probabilistic Metrics:
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Empirical evaluation

▪
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Empirical evaluation

▪ Performance on Test Sets in Unseen Environments
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Empirical evaluation

▪ Computation Complexity
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Empirical evaluation

▪ The Effect of Sample Re-Distribution  
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Contribution

▪ Proposed a sampling-based maximum entropy inverse reinforcement learning 

algorithm

▪ Efficient sampler and sample re-distribution

▪ Better generalization ability and converge significantly faster 
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Take home message

▪ Extract human behaviors from real traffic data

▪ The principle of maximum entropy

▪ A uniformed distribution of samples 
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Future Work

▪ General robotic systems with higher dimensions

▪ Explore better metrics other than the Euclidean distance
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Thank you
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