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Problem Overview



Context

• Energy consumption in residential areas is increasing and

improvements in energy efficiency of the power grid and

appliances is not keeping pace with the increase in demand.
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The Problem

• scheduling appliance power consumption to minimize the

load on the residential power grid.

University of Waterloo 3



Appliance Types

Shiftable Appliances Non-shiftable Appliances

Interruptible Non-interruptible

EV Dishwasher Water Heater

Air Conditioner Washing Machine Lighting

Furnace Refrigerator

Kitchen Appliances

Other Appliances
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Problem Formulation



Entities Involved

There are several entities involved in the problem formulation

1. Energy Consumption Controllers (ECC): Each household in

the residential area has an ECC that schedules the power

consumption for each of the appliances in the households.

2. Aggregator : A component managed by a trusted third-party

entity that collects the power consumption information for

each household from the ECC.
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Notation

• Denote the set of households as N .

• Time is discretized and divided into equal length timeslots

denoted as T = {1, 2, . . . ,T}, where T denotes the fixed

scheduling horizon.

• The set of appliances in a household i ∈ N is denoted as Ai .

• si ,j ,t denotes the state of appliance j in household i at time t.

The state is the value Ei ,j ,t which is the energy required by

appliance j in household i at time t.
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The High-Level Objective

• Let NSAi , NIAi and IAi denote the sets of non-shiftable

appliances, non-interruptible appliances and interruptible

appliances respectively for each household i ∈ N .

• There is no scheduling decision to be made for all appliances

j ∈ NSAi because these appliances must be given power

immediately. Thus in each timeslot, ECCi needs to compute

Pi ,t which is the amount of power consumed by all appliances

j ∈ NIAi ∪ IAi for household i .
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Pricing Model

The equation:

λt = α1(Lt)
2 + α2Lt + α3

Describes the cost of energy at timeslot t (λt) as a function of the

load on the power grid (Lt). α is a vector in R3 that allows energy

providers to alter the price of energy depending on their

infrastructure and how efficient the production of energy scales.
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Pricing Model

The load (Lt) on the grid at a given timeslot t is computed as

Lt =
∑
i∈N

Pi ,t +
∑
i∈N

∑
j∈NSAi

Ei ,j ,t

The first term in the sum is the power consumed by the

non-interruptible and interruptible appliances and the second term

is the power consumed by the non-shiftable assignments.
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Pricing Model

Use a Real-time pricing model (RTP) which encourages ECCs to

minimize the peak-to-average ratio of the load on the power grid.

The real-time price of energy in a given timeslot t is computed as

RTPt =


λt , 0 ≤ Lt ≤ δ1
σ1λt , δ1 < Lt ≤ δ2
σ2λt , Lt > δ2
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Solution



Consumption Scheduling Game

• In the consumption scheduling game, each ECC must

schedule the energy consumption of the NIAs and the IAs in

its corresponding household.

• Since the price of energy (RTPt) is computed in real time,

each ECC must perform scheduling without knowing the price

of energy in the current timeslot.
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Consumption Scheduling Game

Then the consumption scheduling game can be formally described

as follows:

• States: si ,j ,t ∀j ∈ Ai , i ∈ N
• Observations: States at time t and t − 1 as well as RTPt and

RTPt−1.

• Actions: Pi ,t ∀i ∈ N
• Reward Function: Described in subsequent slides.
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Reward Function

The cost of electricity at time t for the ith household:

r1i ,t = Pi ,t × RTPt

Penalize agents for not satisfying energy requests within the time

horizon:

r2i ,t =


0, t 6= T

ε1, t = T ,Ei ,j ,t > 0

ε2, t = T ,Ei ,j ,t = 0

Where ε1 < 0 and ε2 > 0.
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Reward Function

Now the reward function can be defined as follows:

ri ,t = r2i ,t − r1i ,t

The actual goal of the RL problem is to maximize the cumulative

discounted reward:

R(oi ,k ,Pi ,k) =
T∑

t=k

(γi )
t−k ri ,t

where γi is the discount factor for household i .
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Distributed Deep-RL Solution



Distributed RL architecture
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Critic update step

min
θQi

E
[
QθQi (oi ,t ,Pi ,t)− yi

]2
where

yi = ri ,t + γQ̂θQi (oi ,t+1, P̂i ,t+1)
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Actor update step

∇Pi,t
πθQi

(oi ,t ,Pi ,t)
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A note on exploration

• Policy network encodes a deterministic actor, which means

that exploration must be implemented explicitly.

• Implement exploration by adding a random noise term to the

output of each of the actor networks.

• Details of the noise term are not specified in the paper.
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Distributed RL algorithm
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Evaluation



Dataset

• Use a dataset ∗ from Peach Street incorporated which

includes the energy consumption profiles for more than 1000

households.

∗Available at https://dataport.cloud
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Simulation Parameters

Parameter Name Parameter Value

α1 0.02

α2 0.02

α3 0.50

σ1 1.1

σ2 1.3

δ1 50 kW

δ2 100 kW

ε1 -60 × unfulfilled demand

ε2 50
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Baseline Algorithms

C-DDPG Centralized Deep Deterministic Policy Gradient. In

this algorithm the DDPG agent has all the

observations from all the ECCs.

D-DDPG Distributed Deep Deterministic Policy Gradient. This

variant uses a single DDPG agent for each ECC and

trains them all separately (i.e., without using a

centralized critic)
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Average Reward

Figure 1: Average reward during training for DPCS, D-DDPG and

C-DDPG
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Reward Per-Household

Figure 2: Reward per-household during training for DPCS
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Load Profiles With and Without Scheduling
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Load profiles for individual households

Figure 3: Load profiles per-household
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Related Work



Related work using RL

Reference Number Problem Description Approach/Algorithm

[18] Scheduling appliance

power consumption

Q-learning

[19] Scheduling appliance

power consumption

Q-learning

[25] Scheduling appliance

power consumption

Deep Q-learning

[26] Forecast electricity price

& schedule EV charging

Deep Q-learning

[27] Scheduling appliance

power consumption

Policy gradient

[28] Scheduling heating,

ventilation and AC

systems in households

Policy gradient
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Related work not using RL

Reference Number Problem Description Approach/Algorithm

[4, 5] Scheduling appliance

power consumption

Game theoretic techniques

[6] Scheduling appliance

power consumption

with real-time pricing

Genetic algorithm

[7] Industrial power con-

sumption scheduling

Mixed integer linear programming

[8] Incentive scheme to

encourage households

to participate in load

scheduling

Smoothing and regression

[9] Scheduling appliance

power consumption

with privacy constraints

Mixed integer linear programming
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Novelty of this work

• Deep RL formulation with continuous action space.

• Distributed RL solution based on deterministic policy gradient

and actor critic networks.

• Distributed RL architecture ensures that households do not

need to share power consumption profile with central

authority.
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Conclusion



Summary of Major Contributions

• Formulate scheduled energy consumption as a

non-cooperative stochastic game.

• Use a distributed actor-critic method with deterministic policy

gradient updates for the actors to produce energy

consumption schedules for households.

• The schedules produced by DCPS are able to reduce the peak

to average ratio of energy load by up to 12% in some cases.
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Future Work

• Include household feedback as part of the input state for the

actor network.
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Questions?
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