DEVICE PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING

11/12/21

Authors: Mirhoseini et al. [PMLR 2017] Presenter: Joel Rorseth, MMath (thesis) in Computer Science

Roadmap

- 1. Introduction and Background
- 2. Device Placement Optimization with RL
- 3. Evaluation
- 4. Conclusion

INTRODUCTION AND BACKGROUND

Distributed DNN Training

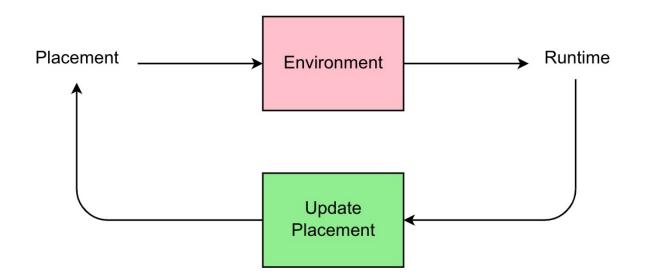
- The success of DNNs has come at a cost of increasing size and computational requirements for both *training* and *inference*
- Two predominant categories for parallel DNN training methods...
- **Data Parallelism (DP):** DNN replicated to *n* workers, each trained using $\frac{1}{n}$ of the data
- **Model Parallelism (MP):** DNN operators are partitioned across *n* workers, which operate sequentially to train all data

Device Placement

- Model Parallelism requires partitioning DNN operators to devices within a heterogeneous distributed environment
- Typically, practitioners manually specify device placement using simple heuristics
- Ideally, an algorithm should mathematically determine an optimal device placement
 - Eliminate the need for experts, and improve upon their suggested placements

Reinforcement Learning to Explore Placements

- Reinforcement learning (RL) is well suited for navigating the placement space
- The high-level solution:
 - Policy can yield placements
 - Reward / cost can be quantified via execution time of training + inference
 - Represent policy using neural network, calculate policy gradients w.r.t. this execution time



Comparison to Related Work

- RL has been applied to similar problems:
 - Job scheduling and resource management (Mao et al., 2016)
 - Combinatorial optimization (Vinyals et al., 2015; Bello et al., 2016)
- The proposed method is the first to apply RL to device placement optimization
 - Practical, large-scale models and data
 - An objective function that will minimize placement runtime
- Graph partitioning can be applied to device optimization
 - Scotch optimizer (Pellegrini, 2009) will be used as a baseline

DEVICE PLACEMENT OPTIMIZATION WITH RL

Defining the Problem Mathematically

- A TensorFlow computation graph *G* consists of:
 - A list of *M* operations $\{o_1, o_2, \dots, o_M\}$
 - A list of *D* available devices {1, ..., *D*}
- A placement $\mathcal{P} = \{p_1, p_2, \dots, p_M\}$ is the assignment of operations to devices
- $r(\mathcal{P})$ denotes execution time for \mathcal{G} under placement \mathcal{P}
 - For more robust learning, authors instead use $R(\mathcal{P}) = \sqrt{r(\mathcal{P})}$
- **Problem:** Find the optimal device placement \mathcal{P} that minimizes $R(\mathcal{P})$

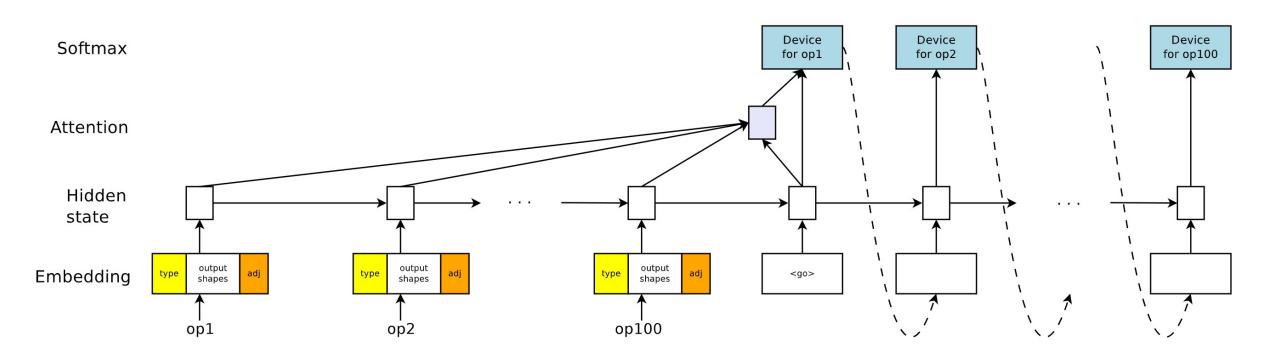
Formulating the Problem Using Reinforcement Learning

- Train a stochastic policy: $\pi(\mathcal{P}|\mathcal{G};\theta)$
- Minimize the objective function: $\mathcal{J}(\theta) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G};\theta)}[R(\mathcal{P})|\mathcal{G}]$
- Learn parameters using Adam (Kingma & Ba, 2014) based on policy gradients from REINFORCE (Williams, 1992) :
 - $\nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P}|\mathcal{G};\theta)}[\mathbb{R}(\mathcal{P}) \cdot \nabla_{\theta} \log p\left(\mathcal{P}|\mathcal{G};\theta\right)]$
- In practice, we estimate by drawing *K* samples
 - $\nabla_{\theta} \mathcal{J}(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} (\mathbb{R}(\mathcal{P}_i) B) \cdot \nabla_{\theta} \log p \left(\mathcal{P}_i | \mathcal{G}; \theta\right)$
 - Reduce variance using baseline *B* (moving average works well)

Policy Network

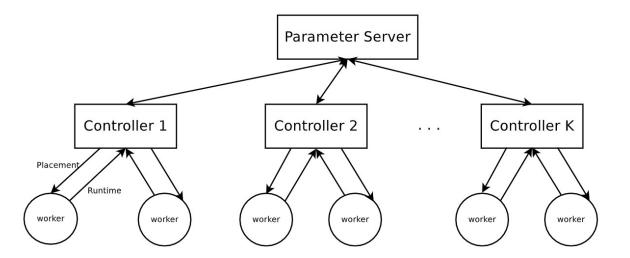
- Policy is defined using a sequence-to-sequence model which uses LSTM with Attention mechanism
 - In this paper, the policy yields placements
- Encoder embeds sequence of operations in *G*
 - Embedding consists of operation type, output shape, and I/O adjacency info
- **Decoder** outputs device assignments for each operation
 - Outputs have tunable embeddings that are fed to subsequent decoder time steps

Policy Network Architecture



Training the Policy Model

- Asynchronous distributed training creates controllers to execute the policy
- Each controller samples *K* placements, then assigns each to one of its *K* workers
- Workers report running time to controller, which calculates gradients and sends them to parameter server



Implementation Details

- The authors use 20 controllers, each with 4 or 8 workers
 - Finding optimal placements took anywhere from **12 to 27 hours**
- Each controller maintains a separate baseline *B*
- To scale better, operations are manually co-located
 - Default TensorFlow co-location groups are used
 - Additional heuristic co-locates operations whose output is sent to only one other operation
 - Co-location rules are manually specified for different types of models

EVALUATION

Evaluation Models

- Evaluate placements yielded for 3 well-known deep learning models:
 - Recurrent Neural Network Language Model with LSTM layers (RNNLM)
 - (Zarembaet al., 2014; Jozefowicz et al., 2016)
 - Neural Machine Translation with attention (NMT)
 - (Bahdanau et al., 2015; Wu et al., 2016)
 - Inception-V3
 - (Szegedy et al., 2016)
- Compare placements by their resulting training execution time, as follows:
 - 1 forward pass + 1 backward pass + 1 parameter update

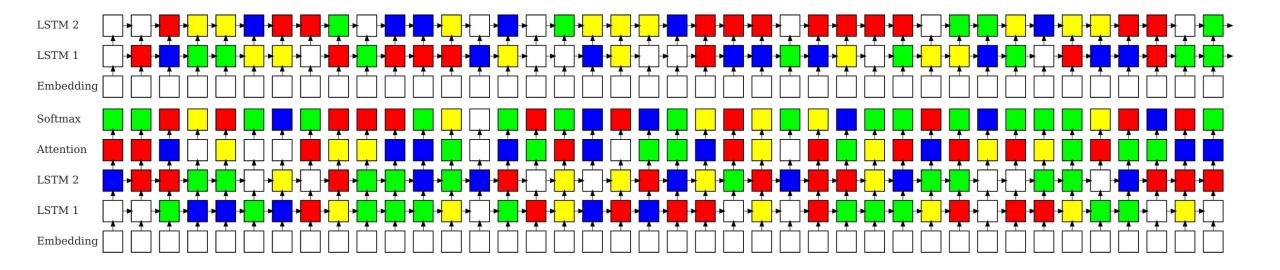
Evaluation Placements

- Compare RL-based placements against placements from other baseline methods:
 - **Single-CPU:** Execute NN on 1 CPU
 - **Single-GPU:** Execute NN on 1 GPU, or CPU if no GPU is available
 - Scotch (Pellegrini, 2009)
 - **MinCut:** Same as Scotch, but only use GPUs when possible
 - **Expert-designed:** Use model-specific placements suggested as optimal in the literature

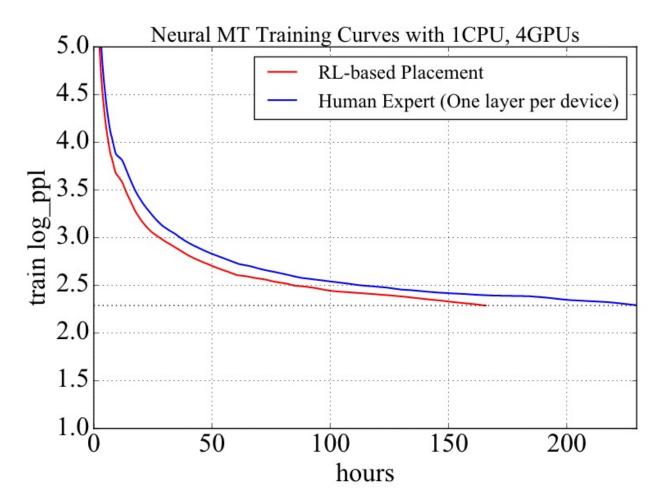
Observed Speedup

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	$\left \begin{array}{c}2\\4\end{array}\right $	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	$0.0\% \\ 0.0\%$
NMT (batch 64)	10.72	OOM	24	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	$\left \begin{array}{c}2\\4\end{array}\right $	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

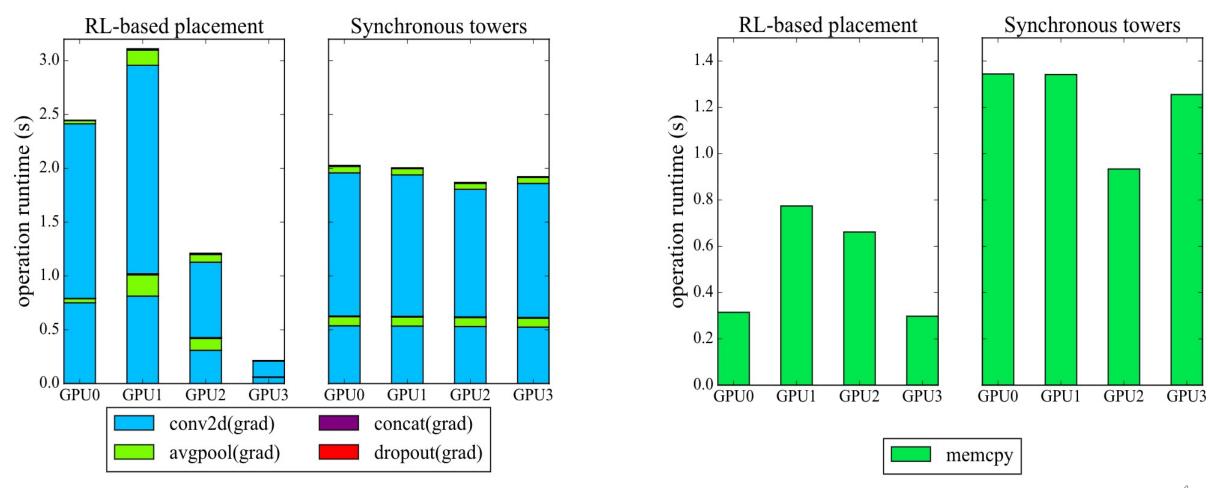
Example Placement for NMT



Example Training Curve for NMT



Profiling Placements



CONCLUSION

Contributions and Advancements

- A *new* RL-based model which discovers optimal device placements
 - Learns to balance the tradeoff between parallelism and inter-device communication
 - Learns non-trivial optimal device placements that are unlikely to be manually crafted
 - Finds optimal placement for minimal training and inference execution time in distributed environment
- Formalization of device placement optimization as a RL problem
 - Objective function with matching sample-based gradient update
 - Sequence-to-sequence model for flexible policy representation
- Empirical evaluation to illustrate optimality of discovered placements

Future Work

- Extend existing model to balance model parallelism *and* data parallelism, and explore newer hybrid parallelism approaches such as pipeline parallelism
- Generalize the model to work with ML frameworks other than TensorFlow
- Improved explanation for the policy network, particularly to expand upon the actual effect and capabilities gained by using Seq2Seq / LSTM / Attention
- Further mathematical discussion of RL portion of the model, and comparison with other existing deep-RL models

References

- Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization with reinforcement learning. In *International Conference on Machine Learning*, 2430-2439, 2017.
- Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed infrastructures: Challenges, techniques, and tools. *ACM Computing Surveys* (CSUR), 53(1):1-37, 2020.

UNIVERSITY OF WATERLOO

FACULTY OF MATHEMATICS

Thank you for listening! Contact: joel.rorseth@uwaterloo.ca

DEVICE PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING PAGE 26