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INTRODUCTION AND BACKGROUND
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Distributed DNN Training
§ The success of DNNs has come at a cost of increasing size and computational 

requirements for both training and inference

§ Two predominant categories for parallel DNN training methods…

§ Data Parallelism (DP): DNN replicated to 𝑛 workers, each trained using !" of 
the data

§ Model Parallelism (MP): DNN operators are partitioned across 𝑛 workers, 
which operate sequentially to train all data
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Device Placement
§ Model Parallelism requires partitioning DNN operators to devices within a 

heterogeneous distributed environment

§ Typically, practitioners manually specify device placement using simple 
heuristics

§ Ideally, an algorithm should mathematically determine an optimal device 
placement
§ Eliminate the need for experts, and improve upon their suggested placements
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Reinforcement Learning to Explore Placements
§ Reinforcement learning (RL) is well 

suited for navigating the placement 
space

§ The high-level solution:
§ Policy can yield placements

§ Reward / cost can be quantified via 
execution time of training + inference

§ Represent policy using neural network, 
calculate policy gradients w.r.t. this 
execution time
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Comparison to Related Work
§ RL has been applied to similar problems:

§ Job scheduling and resource management (Mao et al., 2016)

§ Combinatorial optimization (Vinyals et al., 2015; Bello et al., 2016)

§ The proposed method is the first to apply RL to device placement optimization
§ Practical, large-scale models and data

§ An objective function that will minimize placement runtime

§ Graph partitioning can be applied to device optimization
§ Scotch optimizer (Pellegrini, 2009) will be used as a baseline
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DEVICE PLACEMENT OPTIMIZATION WITH RL
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Defining the Problem Mathematically
§ A TensorFlow computation graph 𝒢 consists of:

§ A list of 𝑀 operations 𝑜!, 𝑜", … , 𝑜#

§ A list of 𝐷 available devices 1,… , 𝐷

§ A placement 𝒫 = 𝑝!, 𝑝#, … , 𝑝$ is the assignment of operations to devices

§ 𝑟(𝒫) denotes execution time for 𝒢 under placement 𝒫

§ For more robust learning, authors instead use R 𝒫 = 𝑟(𝒫)

§ Problem: Find the optimal device placement 𝒫 that minimizes R 𝒫
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Formulating the Problem Using Reinforcement Learning
§ Train a stochastic policy:  𝜋 |𝒫 𝒢; 𝜃

§ Minimize the objective function:  𝒥 𝜃 = 𝔼𝒫~' |𝒫 𝒢;+ R 𝒫 |𝒢

§ Learn parameters using Adam (Kingma & Ba, 2014) based on policy gradients 
from REINFORCE (Williams, 1992) :
§ ∇$𝒥 𝜃 = 𝔼𝒫~' |𝒫 𝒢;$ R 𝒫 1 ∇$log 𝑝 |𝒫 𝒢; 𝜃

§ In practice, we estimate by drawing 𝐾 samples

§ ∇$𝒥 𝜃 ≈ !
+
∑,-!+ R 𝒫, − 𝐵 1 ∇$ log 𝑝 |𝒫, 𝒢; 𝜃

§ Reduce variance using baseline 𝐵 (moving average works well)
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Policy Network
§ Policy is defined using a sequence-to-sequence model which uses LSTM with 

Attention mechanism
§ In this paper, the policy yields placements

§ Encoder embeds sequence of operations in 𝒢
§ Embedding consists of operation type, output shape, and I/O adjacency info

§ Decoder outputs device assignments for each operation
§ Outputs have tunable embeddings that are fed to subsequent decoder time steps
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Policy Network Architecture
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Training the Policy Model
§ Asynchronous distributed training 

creates controllers to execute the 
policy

§ Each controller samples 𝐾
placements, then assigns each to one 
of its 𝐾 workers

§ Workers report running time to 
controller, which calculates gradients 
and sends them to parameter server
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Implementation Details
§ The authors use 20 controllers, each with 4 or 8 workers

§ Finding optimal placements took anywhere from 12 to 27 hours

§ Each controller maintains a separate baseline 𝐵

§ To scale better, operations are manually co-located
§ Default TensorFlow co-location groups are used

§ Additional heuristic co-locates operations whose output is sent to only one other operation

§ Co-location rules are manually specified for different types of models

DEVICE PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING PAGE  14



EVALUATION
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Evaluation Models
§ Evaluate placements yielded for 3 well-known deep learning models:

§ Recurrent Neural Network Language Model with LSTM layers (RNNLM)

§ (Zarembaet al., 2014; Jozefowicz et al., 2016)

§ Neural Machine Translation with attention (NMT)

§ (Bahdanau et al., 2015; Wu et al., 2016)

§ Inception-V3

§ (Szegedy et al., 2016)

§ Compare placements by their resulting training execution time, as follows:
§ 1 forward pass + 1 backward pass + 1 parameter update
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Evaluation Placements
§ Compare RL-based placements against placements from other baseline methods:

§ Single-CPU: Execute NN on 1 CPU

§ Single-GPU: Execute NN on 1 GPU, or CPU if no GPU is available

§ Scotch (Pellegrini, 2009)

§ MinCut: Same as Scotch, but only use GPUs when possible

§ Expert-designed: Use model-specific placements suggested as optimal in the literature
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Observed Speedup
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Example Placement for NMT
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Example Training Curve for NMT
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Profiling Placements
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CONCLUSION
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Contributions and Advancements
§ A new RL-based model which discovers optimal device placements

§ Learns to balance the tradeoff between parallelism and inter-device communication

§ Learns non-trivial optimal device placements that are unlikely to be manually crafted

§ Finds optimal placement for minimal training and inference execution time in distributed 
environment

§ Formalization of device placement optimization as a RL problem
§ Objective function with matching sample-based gradient update

§ Sequence-to-sequence model for flexible policy representation

§ Empirical evaluation to illustrate optimality of discovered placements
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Future Work
§ Extend existing model to balance model parallelism and data parallelism, and 

explore newer hybrid parallelism approaches such as pipeline parallelism

§ Generalize the model to work with ML frameworks other than TensorFlow

§ Improved explanation for the policy network, particularly to expand upon the 
actual effect and capabilities gained by using Seq2Seq / LSTM / Attention

§ Further mathematical discussion of RL portion of the model, and comparison with 
other existing deep-RL models
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