Deep Reinforcement Learning for Page-wise Recommendations

11/12/2021

Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang Tang

Presented by: Arash Moayyedi

Recommendation Systems

Personalized suggestions

Two challenges:

- Updating suggestions based on feedback
- Properly displaying the suggestions

Previous Works

- Mostly greedy static processes
- Fail to continuously update their strategies
- Similar repeating suggestion sets
- Do no consider item placement in page

Our Work

- Leveraging Deep Reinforcement Learning
- Capturing and utilizing users' real-time feedbacks
- Maximizing long-term rewards
- Bundling diverse and complimentary items
- Forming item display strategies for 2D pages

Choice of Framework Architecture

- a) Conventional DQN methods do not support large action spaces
- b) The time-complexity makes it impractical
- c) Suitable for large and dynamic action spaces

Deep Reinforcement Learning for Page-wise Recommendations

Architecture of Actor

Three challenges

- 1. Setting an initial preference at the beginning of the session
- 2. Learning the real-time preferences in the current session
- 3. Jointly generating a set of recommendations and arranging them

Initial State Generation

Input Layer: user's last clicked/purchased items' representations

Embedding Layer: $E_i = tanh(W_E e_i + b_E) \in R^{|E|}$

GRU: Gated Recurrent Units to capture users' sequential behavior

Deep Reinforcement Learning for Page-wise Recommendations

Real-time State Generation

Input Layer: $x_i = (e_i = item rep., c_i = item cat., f_i = user feedback)$

Embedding Layer:

- $E_i = tanh(W_E e_i + b_E) \in R^{|E|}$
- $C_i = tanh(W_Cc_i + b_C) \in R^{|C|}$
- $F_i = tanh(W_F f_i + b_f) \in R^{|F|}$

Page Layer: original arrangement CNN Layer: capture spatial correlations GRU Layer: capture temporal correlations Attention Layer: Weighted inputs

Deep Reinforcement Learning for Page-wise Recommendations

Action Generation

- Converts the vectors to 2D item lists
- Uses deconvolution neural networks (DeCNN)
- Output might need to be matched to actual items

Architecture of Critic

- Uses 2D-CNN to extract action vector from item page
- Action vector and state vector input to DQN

Deep Reinforcement Learning for Page-wise Recommendations

Training

DDPG

Offline

- Pretrain agent with offline data
- Off-policy
- Fixed action data
- Minimize actor output and data difference:

Online

- On-policy
- Output matched through cosine similarity:
- Rewards based on actual user interactions

 $\prod_{\substack{\theta \\ \sigma \\ \theta \\ \sigma }} \sum_{b=1}^{B} \left(\|a_{pro}^{cur} - a_{val}^{cur}\|_{F}^{2} \right)$

$$\mathbf{e}_{i} = \arg \max_{\mathbf{e} \in I} \frac{e_{i}^{\top} \cdot \mathbf{e}}{\|e_{i}\| \|\mathbf{e}\|} = \arg \max_{\mathbf{e} \in I} e_{i}^{\top} \cdot \frac{\mathbf{e}}{\|\mathbf{e}\|}$$

Deep Reinforcement Learning for Page-wise Recommendations

Training Algorithm

Critic

- Minimize loss function: $L(\theta^{\mu}) = \mathbb{E}_{s, a, r, s'} \left[\left(r + \gamma Q_{\theta^{\mu'}}(s', f_{\theta^{\pi'}}(s')) Q_{\theta^{\mu}}(s, a) \right)^2 \right]$
- Trained from samples in replay buffer

Actor

• Policy gradient update: $\nabla_{\theta}\pi f_{\theta}\pi \approx \mathbb{E}_{s} \left[\nabla_{\hat{a}} Q_{\theta}\mu(s, \hat{a}) \nabla_{\theta}\pi f_{\theta}\pi(s) \right]$

Testing Procedure

Online testing

• Similar to transition generating stage during training

Offline testing

• Reranking items

Deep Reinforcement Learning for Page-wise Recommendations

PAGE 13

Sun S

Experiments

Database: 1M recommendation sessions

Initial state: 10 previous items

Recommendation page: 5 rows, 2 columns

Reward:

- Skipped: o
- Clicked: 1
- Purchased 5

Embedding dimensions:

- |E| = 50
- |C| = 35
- |F| = 15

Deep Reinforcement Learning for Page-wise Recommendations

Offline metrics:

- Precision@20,
- Recall@20,
- F1-score@20,
- NDCG@20
- MAP

Online metrics:

• total sum of rewards

Results (Offline Test)

CF: Collaborative Filtering
FM: Factorization Machines
GRU: Click/purchase prediction
DQN: User history -> Recom. page
DDPG: Using 5 fully connected layers

Results (Online Test)

Short session: 10 recommendation pages

Long session: 50 recommendation pages

Effectiveness of Components

- 1: remove embedding layers
- **2:** remove categories and feedback

3: remove GRU in initial state	Methods	Precision	Recall	F1score	NDCG	MAP
-		@20	@20	@20	@20	
4: remove CNN	DeepPage-1-	0.0479	0.3351	0.0779	0.1753	0.1276
	DeepPage-2	0.0475	0.3308	0.0772	0.1737	0.1265
5: remove attention mechanisms	DeepPage-3	0.0351	0.2627	0.0578	0.1393	0.1071
	DeepPage-4	0.0452	0.3136	0.0729	0.1679	0.1216
6: remove GRU in real-time state	DeepPage-5	0.0476	0.3342	0.0775	0.1716	0.1243
	DeepPage-6	0.0318	0.2433	0.0528	0.1316	0.1039
7: replace DeCNN with FCL	DeepPage-7	0.0459	0.3179	0.0736	0.1698	0.1233
, · - · F - · · · · · · · · · · · · · · · · · ·	DeepPage	0.0491	0.3576	0.0805	0.1872	0.1378

Conclusion

- Recommendation systems are complicated tasks
- Deep Reinforcement Learning proves necessary

Future work

• Handling multiple tasks in one reinforcement learning framework

