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Recommendation Systems

Personalized suggestions
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Previous Works

Mostly greedy static processes

Fail to continuously update their strategies

Similar repeating suggestion sets

Do no consider item placement in page
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Our Work

= Leveraging Deep Reinforcement Learning

= Capturing and utilizing users’ real-time feedbacks
= Maximizing long-term rewards

= Bundling diverse and complimentary it¢ins

= Forming item display strategies for 2D pages
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e
Choice of Framework Architecture

a) Conventional DQN methods do not support large action spaces
b) The time-complexity makes it impractical

c) Suitable for large and dynamic action spaces
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Architecture of Actor

Three challenges
1. Setting an initial preference at the beginning of the session
2. Learning the real-time preferences in the current session

3. Jointly generating a set of recommendations and arranging them
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Initial State Generation

Input Layer: user’s last clicked/purchased items’ representations
Embedding Layer: E, = tanh(Wge, + by ) € RIF
GRU: Gated Recurrent Units to capture users’ sequential behavior
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Real-time State Generation

Input Layer: x; = (e; = item rep., c; = item cat., f; = user feedback)

Embedding Layer:

= E. = tanh(Wge; + by ) € RIE

= C, =tanh(Wcc, + b ) € RICI

= F, = tanh(Wf, + b;) € RIFl
Page Layer: original arrangement
CNN Layer: capture spatial correlations

GRU Layer: capture temporal correlations

Attention Layer: Weighted inputs
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Action Generation

= Converts the vectors to 2D item lists
= Uses deconvolution neural networks (DeCNN)

= Output might need to be matched to actual items
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Architecture of Critic

= Uses 2D-CNN to extract action vector from item page

= Action vector and state vector input to DQN
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Training

DDPG

Offline
= Pretrain agent with offline data
= Off-policy
= Fixed action data B
= Minimize actor output and data difference: rg}rn ( | a;;’f; — a;”;’; ||§;)

Online b=1
=  On-policy

e eiT e T _€

= QOutput matched through cosine similarity: e; = arg l;ﬂe«":}X m = g I?Ea}( e; - m

= Rewards based on actual user interactions
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Training Algorithm
Critic
= Minimize loss function:  L(6¥) = Eg o » 5 [(r + ¥ Qpu (5", fgn' (s") — Qonu (s, a))’

= Trained from samples in replay buffer

Actor
= Policy gradient update: Vor for ~ Eg [Vd Qou(s, a)Vgr fgr (s)]
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Testing Procedure

Online testing

= Similar to transition generating stage during training

Offline testing

= Reranking items
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Experiments

Database: 1M recommendation sessions Offline metrics:

Initial state: 10 previous items = Precision@20,

Recommendation page: 5 rows, 2 columns « Recall@20,

Reward:
» Fi-score@20,
= Skipped: 0
» NDCG@20
= Clicked: 1
= Purchased 5 = MAP
Embedding dimensions: Online metrics:
= |E|=50 = total sum of rewards
= ICl=35
= |Fl=15
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Results (0ffline Test)

CF: Collaborative Filtering

FM: Factorization Machines

GRU: Click/purchase prediction
DQN: User history -> Recom. page
DDPG: Using 5 fully connected layers
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Results (Online Test)

Short session: 10 recommendation pages

Long session: 50 recommendation pages
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Effectiveness of Components

1: remove embedding layers

2: remove categories and feedback

3: remove GRU in initial state Methods Precision | Recall | Flscore | NDCG MAP
@20 @20 @20 @20
4: remove CNN DeepPagd. 1 0.0479 | 03351 | 00779 | 0.1753 | 0.1276

DeepPage-2 || 00475 | 03308 | 00772 | 0.1737 | 0.1265
5: remove attention mechaniSms  DeepPage-3 || 00351 | 02627 | 00578 | 01393 | 0.1071
DeepPage-4 || 0.0452 | 03136 | 00729 | 0.1679 | 0.1216

6: remove GRU in real-time state DeepPage-5 0.0476 0.3342 0.0775 0.1716 0.1243
DeepPage-6 0.0318 0.2433 0.0528 0.1316 0.1039

~: replace DeCNN with FCL DeepPage-7 || 0.0459 | 03179 | 0.0736 | 0.1698 | 0.1233
DeepPage 0.0491 | 0.3576 | 0.0805 | 0.1872 | 0.1378
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Conclusion

= Recommendation systems are complicated tasks

= Deep Reinforcement Learning proves necessary

Future work

= Reducing the temporal complexity of mapping output embeddings to actual items

= Handling multiple tasks in one reinforcement learning framework
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