Data center cooling using model-predictive control

NEVENA LAZIC, CRAIG BOUTILIER, TYLER LU, EEHERN WONG, BINZ ROY, MOONKYUNG RYU, GREG IMWALLE

Presenter: Judy Lin

Introduction

- Application of reinforcement learning to the task of large-scale commercial data center cooling
- Presentation Structure
 - Background
 - Solution Proposed
 - Experiments
 - Conclusion

Data Centers

▶ In 2014, data centers in the United States used:

- ▶ 1.8% of power usage
- ▶ 626 billion liters of water
- Data center cooling is well-suited for reinforcement learning
 - Complex, large-scale dynamical system
 - Non-trivial safety constraints
 - Potential for considerable improvements in energy efficiency

Data Center Cooling

EWT = entering water temperature

Controls, States & Disturbances

Controls	Fan speedValve opening
States	 Cold-aisle temperature Differential pressure Entering air temperature Leaving air temperature
Disturbances	Server power usageEntering water temperature

Existing Solutions

- Simple and conservative
- Hand-tuned to specific requirements
 - Equipment architectures, layouts, configurations
- Local PID controllers
 - Located on each air handling unit
 - Regulate differential air pressure and leaving air temperature
 - Operates independently which can lead to a suboptimal state

Proposed Solution

Model-Predictive Control (MPC)

- System identification phase
 - Safe, random exploration with little, or no, print knowledge required
- Control phase
 - Optimizes the cost of a model-predicted trajectory
 - Executes optimized control action at first time step
 - Re-optimize at each time step
- Has been previously applied to regulate building cooling
 - Mostly used historical data or physics-based models
- (Zhou et al., 2012) used model-predictive control to regulate data center cooling
 - Controlled adaptive-vent floor tiles and air-conditioning units

Improvements over Existing Solution

- Directly regulates cold-aisle temperature as variable of interest
 - Models effect of each AHU on a neighbourhood (up to 5 rows)
 - Jointly optimize all controllers
- Simple to deploy
 - Few hours of exploration to identify system dynamics
 - Little or no prior knowledge required
- Operates at less conservative setpoints

MPC: Model Structure

Linear autoregressive model with exogeneous variables

▶ True dynamic are not linear \rightarrow linear approximation is sufficient

T-Markov model

• Used cross validation to determine T = 5

Each time step is 30s

$$\mathbf{x}[t] = \sum_{k=1}^{T} A_k \mathbf{x}[t-k] + \sum_{k=1}^{T} B_k \mathbf{u}[t-k] + C \mathbf{d}[t-1].$$
(1)

MPC: Model Structure

- Sparsity in parameter matrices
 - Data center layout
 - Variable types
- Linear convolutional structure
 - Shared parameters due to regularity of physical layout

Figure 2

MPC: System Identification

- Initiated with "vacuous" model
- Exploration through simple, range-limited uniform random walk
 - Limits control variables to predetermined safe range
 - Limits maximum absolute change between consecutive time steps
- Model updated using recursive least squares

 $u_i^c[t+1] = \max(u_{\min}^c, \min(u_{\max}^c, u_i^c[t] + v_i^c)), \quad v_i^c \sim \text{Uniform}(-\Delta^c, \Delta^c).$ (2)

MPC: System Identification

Figure 3

MPC: Control

- Optimize the cost of trajectory with length L
 - Only executes optimized control action at first time step
 - Assumes disturbances do not change over time

$$\min_{\mathbf{u}} \sum_{\tau=t}^{t+L} \sum_{i=1}^{M} \left(\sum_{s} q_s (x_i^s[\tau] - x_{\rm sp}^s)^2 + \sum_{c} r_c (u_i^c[\tau] - u_{\min}^c)^2 \right)$$
(3)

s.t.
$$u_i^c \in [u_{\min}^c, u_{\max}^c], \quad |u_i^c[\tau] - u_i^c[\tau - 1]| \le \Delta^c, \quad \mathbf{d}[\tau] = \mathbf{d}[\tau - 1]$$
 (4)

$$\mathbf{x}[\tau] = \sum_{k=1}^{T} A_k \mathbf{x}[\tau - k] + \sum_{k=1}^{T} B_k \mathbf{u}[\tau - k] + C \mathbf{d}[\tau - 1]$$
(5)

 $t \le \tau \le t + L, \ c \in \{\text{fan, valve}\}, \ s \in \{\text{DP, CAT, LAT}\}.$ (6)

MPC: Control

- ▶ In practice, controls are optimized in TensorFlow with the Adam algorithm
 - Simple and fast \rightarrow converges before 30s time step length

$$u_i^c[\tau] = \max(u_{\min}^c, \min(u_{\max}^c, u_i^c[\tau-1] + \Delta^c \tanh(z_i^c[\tau])))$$
(7)

- Continue to update model parameters in an online fashion
 - Estimate noise standard deviation as root mean squared error
 - Updates selectively to avoid overwhelming model with steady-state data

Experiments

Experiments

- System identification evaluation
- Comparison to existing local PID controllers

Challenge

- Inability to control environmental disturbances
- Solution
 - Filtered to data within 0.25C and 0.004 of target temperature and pressure
 - Stratified data by different ranges of entering water temperature and server load

Experiments: System Identification

- Model 1: trained on 3 hours of deliberate exploration data with control following independent random walks limited to a safe range
 - Method in proposed solution
- Model 2: trained on a week of historical data generated by local PID controllers
 - Trained on 56 times more data than others
- Model 3: trained on 3 hours of data with controls recommend by a certaintyequivalent controller limited to a safe range
 - No exploratory actions

Experiments: System Identification

Table 2

Entering water	Server load	Model 1	Model 2	Model 3
temperature (C)	(fraction of max)	cost (% data)	cost (% data)	cost (% data)
≤ 20.5	≤ 0.7	84.3 (31%)	94.4 (29.9%)	99.6 (13.7%)
> 20.5	≤ 0.7	85.8 (17.6 %)	93.8 (14.1 %)	112.7 (36.0 %)
≤ 20.5	> 0.7	142.4 (21.9 %)	149.4 (20.4 %)	178.2 (8.3 %)
> 20.5	> 0.7	144.6 (15.3 %)	148.9(12.8 %)	182 .1 (29.9 %)
any	any	110.2 (85.8%)	117.9 (77.2%)	140.4 (87.9%)

Experiments: Local PID Controllers

Figure 5

Entering water temperature (C)	Server load (frac. max)	Local controllers cost (% data)	Model 1 cost (% data)
≤ 20.5 > 20.5 ≤ 20.5 > 20.5	≤ 0.7 ≤ 0.7 > 0.7 > 0.7 any	95.3 (19.8 %) 107.9 (13.8 %) 170.3 (20.1%) 187.8 (20.4 %) 142.2 (74.4%)	106.4 (22.6 %) 104.9 (15.0 %) 130.5 (18.8 %) 128.7 (18.0 %) 116.7 (74.1%)

Table 3

Conclusion

Contributions

- Simple linear model identified from only a few hours of exploration is sufficient for effective regulation of temperatures and airflows in a large-scale commercial data center
- Proposed solution is more cost effective than use of local PID controllers and controllers based on non-exploratory data

Possible extensions

- Use of a higher-capacity model
- Learn a mixture of linear models
- Improve overall data center efficiency

References

- Lazic, Nevena, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, Moonkyung Ryu, and Greg Imwalle. "Data center cooling using model-predictive control." Advances in Neural Information Processing Systems 31, (2018): 3814-3823.
- Zhou, Rongliang, Cullen Bash, Zhikui Wang, Alan McReynolds, Thomas Christian, and Tahir Cader. "Data center cooling efficiency improvement through localized and optimized cooling resources delivery." American Society of Mechanical Engineers, (2012): 1789–1796.