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Data Cenfters

» In 2014, data centers in the United States used:
» 1.8% of power usage

» 626 billion liters of water

» Data center cooling is well-suited for reinforcement learning
» Complex, large-scale dynamical system
» Non-trivial safety constraints

» Potential for considerable improvements in energy efficiency



Data Center Cooling
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Conftrols, States & Disturbances

 Fan speed

el * Valve opening
« Cold-aisle temperature
« Differential pressure
States

« Enfering air temperature
« Leaving air temperature

« Server power usage

Disturbances « Entering water temperafure



Existing Solutions

» Simple and conservative

» Hand-tuned to specific requirements

» Equipment architectures, layouts, configurations

» Local PID controllers
» Located on each air handling unit
» Regulate differential air pressure and leaving air temperature

» Operates independently which can lead to a suboptimal state



Proposed Solution

» Model-Predictive Control (MPC)
» System identification phase
» Safe, random exploration with little, or no, Er* rkﬁi?wledge required
» Control phase
» Optimizes the cost of a model-predicted trajectory
» Executes optimized control action at first time step

» Re-optimize at each time step

» Has been previously applied to regulate building cooling
» Mostly used historical data or physics-based models

» (Zhou et al., 2012) used model-predictive conftrol to regulate data center cooling

» Controlled adaptive-vent floor tiles and air-conditioning units



Improvements over Existing Solutfion

» Direcftly regulates cold-aisle temperature as variable of interest
» Models effect of each AHU on a neighbourhood (up to 5 rows)

» Jointly optimize all controllers

» Simple to deploy

» Few hours of exploration to identify system dynamics

» Little or no prior knowledge required

» Operates at less conservative setpoints



MPC: Model Structure

» Linear autoregressive model with exogeneous variables

» True dynamic are not linear = linear approximation is sufficient

» T-Markov model

» Used cross validation to determine T =5
» Each time step is 30s

x[t] = ) Awx[t—k]+ > Bgult — k] + Cd[t —1]. (1)
k=1 k=1



MPC: Model Structure

» Sparsity in parameter matrices

» Data center layout

» Variable types

» Linear convolutional structure

» Shared parameters due to
regularity of physical layout
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MPC: System Idenfification

» Initiated with *vacuous” model

» Exploration through simple, range-limited uniform random walk
» Limits control variables to predetermined safe range

» Limits maximum absolute change between consecutive time steps

» Model updated using recursive least squares

us [t + 1] = max(us;,, min(ug .., us[t] +v5)), vi ~ Uniform(—A° A°).

2)




MPC: System Idenfification
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» Opftimize the cost of tfrajectory with length L

» Only executes optimized control action at first time step

» Assumes disturbances do not change over time

t+L M
min -5 (30 .(atlr] - a5,)? + 3 reuslr] - ui)?)
T=t i=1 S ¢
st uf € v, il ~ ol 1| < 4% dlr] =dlr -1

T
x[7] = Z Apx[r — k] + ) Byu[r — k] + Cd[r — 1]
k=1 k=1
t <7 <t+L, c€ {fan,valve}, s € {DP, CAT,LAT}.

3)
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)
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MPC: C ahiliiial

» In practice, conftrols are optimized in TensorFlow with the Adam algorithm

» Simple and fast 2 converges before 30s fime step length

c
min?

min(ug .., us [T — 1] + Aanh(z{[7]))) (7)

u;|7] = max(u max?

» Confinue to update model parameters in an online fashion
» Estimate noise standard deviation as root mean squared error

» Updates selectively to avoid overwhelming model with steady-state data



Experiments

» Experiments
» System identification evaluation

» Comparison to existing local PID controllers

» Challenge

» Inability to control environmental disturbances

» Solution
» Filtered to data within 0.25C and 0.004 of target temperature and pressure

» Strafified data by different ranges of entering water temperature and server load



Experiments: System ldentitication

» Model 1: trained on 3 hours of deliberate exploration data with control following
independent random walks limited to a safe range

» Method in proposed solution

» Model 2: trained on a week of historical data generated by local PID conftrollers

» Trained on 56 times more data than others

» Model 3: trained on 3 hours of data with controls recommend by a certainty-
equivalent controller limited to a safe range

» No exploratory actions



Experiments: System ldentitication
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Entering water ~ Server load Model 1 Model 2 Model 3
temperature (C) (fraction of max) cost (% data) cost (% data) cost (% data)

Table 2 < 20.5 <0.7 84.3 (31%) 94.4 (29.9%) 99.6 (13.7%)
> 20.5 <0.7 85.8(17.6 %) 93.8(14.1%) 112.7 (36.0 %)
<20.5 > 0.7 142.4 (219 %) 149.4 (204 %) 178.2 (8.3 %)
> 20.5 > 0.7 144.6 (15.3 %) 148.9(12.8 %) 182 .1(29.9 %)
any any 110.2 (85.8%) 1179 (77.2%) 140.4 (87.9%)




Experiments: Local PID Controllers
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<205
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any

< Q.7
<0
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> 0.7
any
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107.9 (13.8 %)
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Conclusiels

» Conftributions

» Simple linear model identified from only a few hours of exploration is sufficient for effective
regulation of temperatures and airflows in a large-scale commercial data center

» Proposed solution is more cost effective than use of local PID controllers and controllers
based on non-exploratory data

» Possible extensions
» Use of a higher-capacity model
» Learn a mixture of linear models

» Improve overall data center efficiency
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