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Introduction

u Application of reinforcement learning to the task of large-scale 
commercial data center cooling

u Presentation Structure
u Background

u Solution Proposed

u Experiments

u Conclusion



Data Centers

u In 2014, data centers in the United States used:
u 1.8% of power usage

u 626 billion liters of water

u Data center cooling is well-suited for reinforcement learning
u Complex, large-scale dynamical system

u Non-trivial safety constraints

u Potential for considerable improvements in energy efficiency



Data Center Cooling

Figure 1

AHU = air handling unit
EAT = entering air temperature
LAT = leaving air temperature
CAT = cold-aisle temperature
DP = differential pressure
EWT = entering water temperature



Controls, States & Disturbances

Controls • Fan speed
• Valve opening

States

• Cold-aisle temperature
• Differential pressure
• Entering air temperature
• Leaving air temperature

Disturbances • Server power usage
• Entering water temperature



Existing Solutions

u Simple and conservative

u Hand-tuned to specific requirements
u Equipment architectures, layouts, configurations

u Local PID controllers
u Located on each air handling unit
u Regulate differential air pressure and leaving air temperature

u Operates independently which can lead to a suboptimal state



Proposed Solution

u Model-Predictive Control (MPC)
u System identification phase

u Safe, random exploration with little, or no, prior knowledge required

u Control phase
u Optimizes the cost of a model-predicted trajectory

u Executes optimized control action at first time step

u Re-optimize at each time step

u Has been previously applied to regulate building cooling
u Mostly used historical data or physics-based models

u (Zhou et al., 2012) used model-predictive control to regulate data center cooling
u Controlled adaptive-vent floor tiles and air-conditioning units



Improvements over Existing Solution

u Directly regulates cold-aisle temperature as variable of interest
u Models effect of each AHU on a neighbourhood (up to 5 rows) 

u Jointly optimize all controllers

u Simple to deploy
u Few hours of exploration to identify system dynamics

u Little or no prior knowledge required

u Operates at less conservative setpoints



MPC: Model Structure

u Linear autoregressive model with exogeneous variables
u True dynamic are not linear à linear approximation is sufficient

u T-Markov model
u Used cross validation to determine T = 5

u Each time step is 30s



MPC: Model Structure

u Sparsity in parameter matrices
u Data center layout

u Variable types

u Linear convolutional structure
u Shared parameters due to 

regularity of physical layout

Figure 2



MPC: System Identification

u Initiated with “vacuous” model

u Exploration through simple, range-limited uniform random walk
u Limits control variables to predetermined safe range

u Limits maximum absolute change between consecutive time steps

u Model updated using recursive least squares



MPC: System Identification

Figure 3



MPC: Control

u Optimize the cost of trajectory with length L
u Only executes optimized control action at first time step

u Assumes disturbances do not change over time



MPC: Control

u In practice, controls are optimized in TensorFlow with the Adam algorithm
u Simple and fast à converges before 30s time step length

u Continue to update model parameters in an online fashion
u Estimate noise standard deviation as root mean squared error

u Updates selectively to avoid overwhelming model with steady-state data



Experiments

u Experiments
u System identification evaluation

u Comparison to existing local PID controllers

u Challenge
u Inability to control environmental disturbances

u Solution
u Filtered to data within 0.25C and 0.004 of target temperature and pressure

u Stratified data by different ranges of entering water temperature and server load



Experiments: System Identification

u Model 1: trained on 3 hours of deliberate exploration data with control following 
independent random walks limited to a safe range
u Method in proposed solution

u Model 2: trained on a week of historical data generated by local PID controllers
u Trained on 56 times more data than others

u Model 3: trained on 3 hours of data with controls recommend by a certainty-
equivalent controller limited to a safe range
u No exploratory actions



Experiments: System Identification

Figure 4

Table 2



Experiments: Local PID Controllers

Figure 5

Table 3



Conclusion

u Contributions
u Simple linear model identified from only a few hours of exploration is sufficient for effective 

regulation of temperatures and airflows in a large-scale commercial data center

u Proposed solution is more cost effective than use of local PID controllers and controllers 
based on non-exploratory data

u Possible extensions
u Use of a higher-capacity model

u Learn a mixture of linear models

u Improve overall data center efficiency
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