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Composable Deep Reinforcement Learning for Robotic Manipulation

Tuomas Haarnoja', Vitchyr Pong', Aurick Zhou'!, Murtaza Dalal’, Pieter Abbeel':, Sergey Levine

Abstract— Model-free deep reinforcement learning has been
shown to exhibit good performance in domains ranging from
video games to simulated robotic manipulation and locomotion.
However, model-free methods are known to perform poorly
when the interaction time with the environment is limited, as
is the case for most real-world robotic tasks. In this paper,
we study how maximum entropy policies trained using soft
Q-learning can be applied to real-world robotic manipulation.
The application of this method to real-world manipulation is
facilitated by two important features of soft Q-learning. First,

soft Q-learning can learn multimodal exploration strategies by

learning policies represented by expressive energy-based mod-
els. Second, we show that policies learned with soft Q-learning

can be composed to create new policies, and that the optimality
of the resulting policy can be bounded in terms of the divergence

between the composed policies. This compositionality provides
an especially valuable tool for real-world manipulation, where
constructing new policies by composing existing skills can
provide a large gain in efficiency over training from scratch.
Our experimental evaluation demonstrates that soft Q-learning
is substantially more sample efficient than prior model-free deep
reinforcement learning methods, and that compositionality can
be performed for both simulated and real-world tasks.

[. INTRODUCTION

The intersection of expressive, general-purpose function
approximators, such as neural networks, with general pur-
pose model-free reinforcement learning algorithms that can
be used to acquire complex behavioral strategies holds the
promise of automating a wide range of robotic behaviors:
reinforcement learning provides the formalism for reason-
ing about sequential decision making, while large neural
networks provide the representation that can, in principle,
be used to represent any behavior with minimal manual
engineering. However, applying model-free reinforcement
learning algorithms with multilayer neural network repre-
sentations (1Le., deep reinforcement learning) to real-world
robotic control problems has proven to be very difficult in
practice: the sample complexity of model-free methods tends

to be quite high, and is increased further by the inclusion of

high-capacity function approximators. Prior work has sought
to alleviate these issues by parallelizing learning across mul-
tiple robots [1], making use of example demonstrations [2],
[3], or training in simulation and relying on an accurate
model to enable transfer to the real world [4], [5]. All of these
approaches carry additional assumptions and limitations.
Can_we instead devise model-free reinforcement learning
algorithms that are efficient enough to train multilayer neural
network models directly in the real world, without reliance
on_simulation, demonstrations, or multiple robots?
I Berkeley Artificial Intelligence Research, UC Berkeley, ?Open Al

{haarnoija, ] azhoud2, mdalal, pabbeel,
svlevine}@berkeley.edu

1

Fig. L. We tramned a Sawyer robot to stack Lego blocks together
using maximum ecntropy reinforcement leaming algonthm called soft Q-
learning. Tramning a policy from scratch takes less than two hours, and the
learned policy 15 extremely robust against perturbations (left figure). We also
demonstrate how learned policies can be combined to form new compound
skills, such as stacking while avoiding a tower of Lego blocks (right figure).

We hypothesize that the maximum entropy principle [6]
can yield an effective framework for practical, real-world
deep reinforcement learning due to the following two prop-
erties. First, maximum entropy policies provide an inher-
ent, informed exploration strategy by expressing a stochas-
ic_policy via the Boltzmann distribution, with the energy
corresponding to the reward-to- -function [7]. This
distribution assigns a non-zero probability to all actions, but
actions with higher expected rewards are more likely to be
sampled. As a consequence, the policy will automatically
direct exploration into regions of higher expected return. This
property, which can be thought of as a soft combination
of exploration and exploitation, can be highly beneficial
in real-world applications, since 1t provides considerably
more structure than e-greedy exploration and, as shown in
our experiments, substantially improves sample complexity.
Second, as we show in this paper, independently trained
maximum entropy policies can be composed together by
adding their Q-functions, yielding a new policy for the
combined reward function that is provably close to the
corresponding optimal policy. Composability of controllers,
which 1s not typically possible in standard reinforcement
learning, is especially important for real-world applications,
where reuse of past experience can greatly improve sample
efficiency for tasks that can naturally be decomposed into
simpler sub-problems. For instance, a policy for a pick-and-
place task can be decomposed into (1) reaching specific
x-coordinates, (2) reaching specific y-coordinates, and (3)
avoiding certain obstacles. Such decomposable policies can
therefore be learned in three stages, each yielding a sub-
policy, which can later be combined offline without the need
to interact with the environment.
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NAF: Normalized Advantage Functions

DDPG: Deep Deterministic Policy Gradient







>'e SQL: Soft Q-Learning

Standard RL Policy:

N
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Maximum Entropy Policy:
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Lemma 1: Let Q7 and Q5 be the soft Q-function of the
optimal policies corresponding to reward functions r; and
ro, and define Qs = 5 (Q7 + Q3). Then the optimal soft Q-

functlon of the combmed rewa.rd rc 3 ‘12 (7‘1 + r 2) sdtlsﬁes

.q, e _-'sA q. - "s‘ ‘~‘4" 2
’_- - -

QL(S a) > Qc(s a) > QL(S a) C*(s a) ‘v’s e S Va € .A
(7)
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where C* is the fixed point of (8)

C(s,a) < YEs~p(s's,a) [Dg (m1(-[s") || w3(-[s")) + maxareca C(S/aa,)]:

and D1 (- || -) is the Rényi divergence of order 1/2.
Proof: " See Appendix Al u
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Theorem 1: With the definitions in Lemma 1, the value

'.—s’ = 5 Z i ’ . —" e S
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Q <s a) > st a) D*(s a> © |

’,4

where D*(s a) is the ﬁxed pomt of o 1 -
D(s,a) < YEgp(s/|s,a) |Earmrs(arjsy [C*(s',@") + D(s',a")]].

Proof: See Appendix B| .
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1. Pushing

2. Reaching
3. Lego Block Stacking
4. Stacking + Avoiding
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Soft Q-Learning




