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I Introduction

Find chromatic number of a
graph using RL.

Providing a scalable approach.

Using adapted AlphaGo Zero
with graph embedding.



! How to tackle the problem?

Framework for learning fast heuristics inspired by AlphaGo Zero:
« Design FastColorNet (Deep Neural Network)
« Using MCTS with UCB
« Using Graph Embeddings for FCN
* Run on HPC



Background




I Graph Coloring

X(G) : Minimum Vertex Coloring

» Assign a color to each vertex.
* No two adjacent vertices use the same color.
« Minimize the number of colors.

Applications:
« Parallel computing.

« VLS.

« Pattern matching. Figure 1: Vertex coloring
for the Petersen graph



@

Complexity: NP-Hard
I Algorithms To make it fast: using heuristics

In practice: greedy heuristics



Challenges

« Knowledge about graph to design heuristics

« The complexity of getting training data




onte Carlo Tree Search

BACKPROPAGATION

SELECTION EXPANSION SIMULATION
N 7N
(11/21) [11/21]
/.‘\ ,f/>\" ")’/\\‘\
- ™
- /// ‘\.\\
- P
D ® €
\\ ;,ﬂ" '\..\l ’/f.

N\ —~ 4, ) _1// e
- ~ /' \‘ 7 \\‘. 7 ‘\‘. 7 o\
[ 2/3 ) [ 2/4 ) [ 1/6 ) [1/2) [ 2/3)
SN S N A\ S N \\\_,/




Approach



| Graph Coloring as an MDP

(' : a matrix which represents the assignment of colors to graph.
The MDP state at step t: O'(1) .

The set of actions: A, is the set of valid colors for vertex: at step t.

Reward function: the negative total number of colors used so far.

Different graphs imply different MDP



| Graph Coloring as a Zero-Sum game

« Self-play: play against the best previous coloring algorithm.
* New reward function: win (+1) — lose (-1) — tie (0)

« Better for reward scaling and alpha-beta-pruning.



| Is Graph Coloring Harder Than Go?

Graph-32 | Chess | Graph-128 | Go Graph-512 | Graph-8192 | Graph-10°
AVg. MDP States 1021 1060 10141 10460 1079() 1019,686 1045,830,967
Avg. Moves Per Game | 32 40 128 200 512 8,192 107

Table 1: Estimated MDP states for single random graphs of various sizes compared to Chess and Go.
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| General View
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Figure 2: The reinforcement learning algorithm.
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Selection: maximize the UCB

Expansion

| MCTS + UCB

Simulation: using FastColorNet

Backpropagation

Selection Expansion Simulation Backpropagation

Figure 3: MCTS + UCB



| Fast Color Net
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| Graph Embeddings

Algorithm 1 Graph Embedding

1: Input: parameters 0 € T
2: Initialize ﬁgo) =0, foralli € V
3: fort =1to1'do

4:  fori eV do

5: vi = |di, pii], di is ©’s degree (one-hot)

6: li = [vi,d;, ﬁgt_l)], where j = random(N (7))
7. C; = 0

8: for k = 1to L do

9: li,Ci = LSTMQ(C“ZZ)

10: end for

11: ﬁgt) = LSTM@(CT',’UT;)

12:  end for

13: end for{fixed point equation update}
14: return {f1] }icv
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| Fast Color Net Layers
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High Performance Training System

» Use data-parallelism for training.
» stochastic gradient descent with MPI for communication.

 The MCTS is completely data-parallel.



| Empirical Analysis of Results

== fast-color-net = aynamic-oraerea oraered = unoraered

number of colors

number of vertices

Figure 6: The number of colors used on the WS
graph test sets as a function of vertex count.
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| Empirical Analysis of Results
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| Empirical Analysis of Results

Dataset ER-1K | WS-1K | ER-16K | WS-16K | ER-10M | WS-10M | SS-CIR | SS-LP | SS-Web | SS-FE
Unordered | 34.3 59.2 732.8 265.35 42923 16415 4.2 4.25 3.75 4.85
Ordered 32.45 57.35 715.2 261.8 40347 15922 3.15 2.95 2.6 4.05
Dynamic 32.2 57.15 708.5 261.2 37524 15843 3.55 3.15 2.7 4.25
FCN-train | 29.58 52.5 660.19 | 237.03 35362 14924 3.0 2.95 24 3.75
FCN-test 31.7 56.59 702.57 258.3 37849 15023 3.1 2.95 2.55 4.1
FCN-gen | 33.9 57.66 708.13 267.53 43415 17262 4.15 4.3 3.7 4.95

Table 2: The average number of colors across our test sets. FCN is our FastColorNet architecture. SS means
SuiteSparse (CIR: circuits, LP: linear programming, FE: finite-element). FCN-train represents performance
when a graph present in the training set is evaluated on, FCN-test uses a model trained on the same type of graph,
and FCN-gen tests generalization performance of a model trained on random graphs of many sizes.
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| Criticism

* In most cases, Dynamic performs better than FCN-test and FCN-
Gen.

* They do not mention the time of each algorithm in the results.



Conclusion

« Convert graph coloring to an MDP.
« Convert the problem to a zero-sum game.
» Solve the zero-sum game using FastColorNet + MCTS.

» Evaluate for different types of graphs.
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Thank you!




