CS786 Lecture 9: May 30, 2012

Structured Potentials and Weighted
Model Counting
[KF] Chapter 5

CS786 P. Poupart 2012

1

General Potentials

• General form: table

A	В	Pr(B A)
a_1	b_1	0.1
a_1	b_2	0.9
a_2	b_1	0.2
a_2	b_2	0.8
a_3	b_1	0.3
a_3	b_2	0.7

CS786 P. Poupart 2012

Structured Potentials

- Determinism
 - Zeros: sparse representation
- Context Specific Independence
 - Repeated values: tree representation
- Causal independence
 - Multiplicative decomposition: factorization

CS786 P. Poupart 2012

3

Determinism

- Degenerate conditional distribution:
 - Deterministic mapping

$$f(A) = \begin{cases} b_1 & \text{if } A = a_3 \\ b_2 & \text{otherwise} \end{cases}$$

A	В	Pr(B A)
a_1	b_1	0
a_1	b_2	1
a_2	b_1	1
a_2	b_2	0
a_3	b_1	0
a_3	b_2	1

CS786 P. Poupart 2012

Context Specific Independence

- Recall conditional independence $X \perp Y \mid Z \implies \Pr(X \mid Y, z) = \Pr(X \mid z) \forall z \in dom(Z)$
- What if independence holds only in the context of Z = z₁?
 X ⊥ Y | z₁ ⇒ Pr(X|Y, z₁) = Pr(X|z₁)
- This is known as context specific independence

CS786 P. Poupart 2012

5

Repeated Values

• Conditional Independence: $B \perp C \mid A$

A	В	С	Pr(C A,B)
a_1	b_1	c_1	0.1
a_1	b_1	c_2	0.9
a_1	b_2	c_1	0.1
a_1	b_2	c_2	0.9
a_2	b_1	c_1	0.3
a_2	b_1	c_2	0.7
a_2	b_2	c_1	0.3
a_2	b_2	c_2	0.7

->

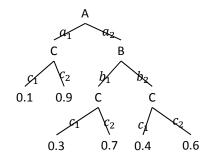
A	С	Pr(C A)
a_1	c_1	0.1
a_1	c_2	0.9
a_2	c_1	0.3
a_2	c_2	0.7

CS786 P. Poupart 2012

Tree Representation

• Context Specific Independence: $B \perp C \mid a_1$

A	В	С	Pr(C A,B)
a_1	b_1	c_1	0.1
a_1	b_1	c_2	0.9
a_1	b_2	c_1	0.1
a_1	b_2	c_2	0.9
a_2	b_1	c_1	0.3
a_2	b_1	c_2	0.7
a_2	b_2	c_1	0.4
a_2	b_2	c_2	0.6



CS786 P. Poupart 2012

7

Gating

- One parent variable I acts as a gate to determine which cause X_i will be active $\Pr(Y|I,X_1,X_2,...,X_n) = \Pr(Y|X_I)$
- Example:
 - -I: sensor activated by a robot
 - $-X_1, \dots, X_n$: set of possible sensors
 - Y: noisy sensor reading
- # parameters: linear in # parents
 - Specify $Pr(Y|X_i)$ ∀ $i \in dom(I)$

CS786 P. Poupart 2012

Chaining

• Cascading sequence of causes

Pr(Y = t|X₁,...,X_n) =
$$\begin{cases} 0.1 & \text{if } X_1 = t \\ 0.2 & \text{if } X_1 = f \land X_2 = t \\ 0.3 & \text{if } X_1 = X_2 = f \land X_3 = t \\ ... \\ 0.7 & \text{otherwise} \end{cases}$$

- Common in probabilistic if-then-else rules
- # parameters: linear in # parents

CS786 P. Poupart 2012

Causal Independence

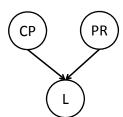
- Noisy-OR (binary variables)
 - Noisy-MAX (multi-valued variables)
- Noisy-AND (binary variables)
 - Noisy-MIN (multi-valued variables)
- Two common representations
 - Factored representation
 - Augmented Bayesian network

CS786 P. Poupart 2012

Example: Letter of Reference

• Variables:

ClassParticipation \in {low, high} ProjectReport \in {good, excellent} Letter \in {average, strong}



Conditional distributions

$$Pr(L = a | CP = h, PR = g) = 0.1$$

$$Pr(L = a | CP = l, PR = e) = 0.2$$

$$Pr(L = a | CP = h, PR = e) = 0.02$$

$$Pr(L = a | CP = l, PR = g) = 1$$

CS786 P. Poupart 2012

11

Noisy-OR Formulation

Re-label domain values

CP: low=0, high=1

PR: good=0, excellent=1

L,L_{CP},L_{PR}: average=0, strong=1

Conditional distributions for L_{CP}, L_{PR}:

$$Pr(L_{CP} = 0 | CP = 0) = 1$$

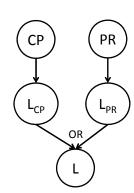
$$Pr(L_{CP} = 0 | CP = 1) = 0.1$$

 $\Pr(L_{PR}=0|PR=0)=1$

 $Pr(L_{PR} = 0|PR = 1) = 0.2$

Conditional distribution for L:

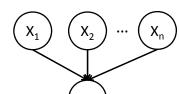
$$L = L_{CP} \vee L_{PR}$$



CS786 P. Poupart 2012

Noisy-OR Formulation

 Consider n causes X₁, ..., X_n that independently affect a variable Y



- Let $Pr(Y = 0 | X_i = 1, X_{\sim i} = 0) = q_i$
- General formula

$$\Pr(Y=0|X) = \prod_{i} q_i^{X_i}$$

CS786 P. Poupart 2012

13

Inference

- How can we exploit local structure in inference?
- Two common approaches
 - Variable elimination with structured potentials
 (i.e., tree-based representation instead of tables)
 - Weighted model counting

CS786 P. Poupart 2012

Model Counting

- SAT: Is there a satisfying assignment?
- Model Counting: How many satisfying assignments are there?
- Weighted model counting: What is the sum of the weights of the satisfying assignments?
 - Pr(X = x): sum of the weights (probabilities) of the joint assignments that satisfy X = x?

CS786 P. Poupart 2012

15

SAT

- DPLL: backtracking search
 - depth-first search over the space of assignments
 - Backtrack when a clause can never be satisfied
 - Return SAT as soon as all clauses are satisfied
 - Return UNSAT if the search completes without finding any satisfying assignment

CS786 P. Poupart 2012

Model Counting

- DPLL: backtracking search
 - Depth first search over the space of assignments
- Increment #SAT each time a satisfying assignment is found
- Return #SAT once the search completes

CS786 P. Poupart 2012

17

Weighted Model Counting

- DPLL: backtracking search
 - Depth first search over the space of assignments
- Each time a satisfying assignment is found, increment #SAT by the weight of the assignment
- Return #SAT once the search completes

CS786 P. Poupart 2012

Bayesian Network → Weighted SAT

- Boolean variables:
 - Indicator variables I_{x_i} : for each variable assignment $X=x_i$
 - Parameter variables $heta_{x_i|pa_X}$: for each parameter
- Weights
 - For each parameter variable:

$$w(\theta_{x_i|pa_X} = true) = \Pr(x_i|pa_X)$$

 $w(\theta_{x_i|pa_X} = false) = 1$

CS786 P. Poupart 2012

19

Clauses

- Indicator clauses:
 - At least one true indicator

$$I_{x_1} \vee I_{x_2} \vee I_{x_3}$$

- At most one true indicator

$$I_{x_i} \to \neg I_{x_j} \ \forall i \neq j$$

- Parameter clauses:
 - Consistency

$$I_{a_1} \wedge I_{b_2} \longleftrightarrow \theta_{b_2|a_1}$$

CS786 P. Poupart 2012