Statistical Learning

CS 786 University of Waterloo Lecture 6: May 17, 2012

Decision Tree Predictions

- Can make deterministic and probabilistic predictions
 - Deterministic rule:
 - $CS485 = A \land STAT231 = A \implies CS786 = A$
 - Probabilistic rule:
 - $Pr(CS786 = A \mid CS485 = A \land STAT231 = A) = 0.9$
- Probabilistic rule is a conditional distribution... could we use Bayes nets instead of decision trees?

CS786 Lecture Slides (c) 2012 P. Poupart

Bayesian Network Predictions

- Inference queries can be used to make probabilistic predictions:
- Advantages:
 - Predict any variable
 - Prediction based on partial evidence
- Question: how do we learn the parameters of a Bayesian network?

CS786 Lecture Slides (c) 2012 P. Poupart

3

Statistical Learning

- · Three common approaches
 - Bayesian learning
 - Maximum a posteriori
 - Maximum likelihood
 - · Conditional maximum likelihood

4

CS786 Lecture Slides (c) 2012 P. Poupar

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

CS786 Lecture Slides (c) 2012 P. Poupart

5

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

S786 Lecture Slides (c) 2012 P. Poupart

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h₂: 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime
 - ..

CS786 Lecture Slides (c) 2012 P. Poupart

7

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: $\mathbf{d} = \langle d_1, d_2, ..., d_n \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)

CS786 Lecture Slides (c) 2012 P. Poupart

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|\mathbf{d}) = \Sigma_i Pr(X|\mathbf{d}, h_i)P(h_i|\mathbf{d})$ = $\Sigma_i Pr(X|h_i)P(h_i|\mathbf{d})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

CS786 Lecture Slides (c) 2012 P. Poupart

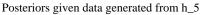
9

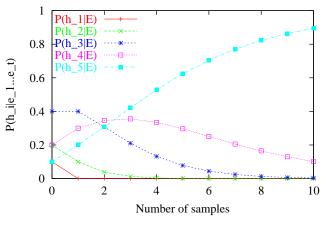
Candy Example

- Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
- Assume candies are i.i.d. (identically and independently distributed)
 - $P(\mathbf{d}|\mathbf{h}) = \Pi_j P(\mathbf{d}_j|\mathbf{h})$
- Suppose first 10 candies all taste lime:
 - $-P(d|h_5) = 1^{10} = 1$
 - $-P(d|h_3) = 0.5^{10} = 0.00097$
 - $-P(d|h_1) = 0^{10} = 0$

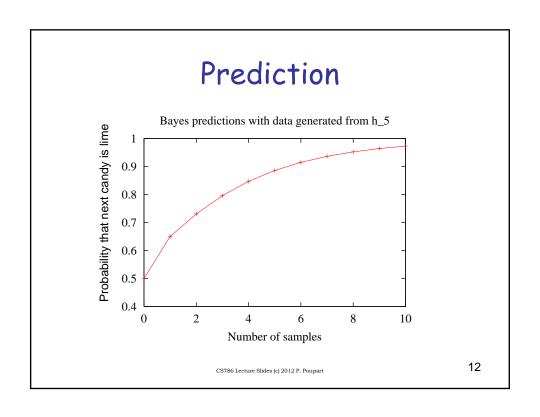
S786 Lecture Slides (c) 2012 P. Poupart

Posterior





CS786 Lecture Slides (c) 2012 P. Poupart



Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses weighted and considered)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

CS786 Lecture Slides (c) 2012 P. Poupart

13

Maximum a posteriori (MAP)

- Idea: make prediction based on most probable hypothesis h_{MAP}
 - h_{MAP} = $argmax_{h_i} P(h_i|d)$
 - $P(X|d) \approx P(X|h_{MAP})$
- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

CS786 Lecture Slides (c) 2012 P. Poupart

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, $Pr(lime|h_{MAP}) = 0.5$
 - 2 limes: $h_{MAP} = h_4$, $Pr(lime|h_{MAP}) = 0.75$
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - ...
- After only 3 limes, it correctly selects h_5

CS786 Lecture Slides (c) 2012 P. Poupart

15

Candy Example (MAP)

- But what if correct hypothesis is h₄?
 - h_4 : P(lime) = 0.75 and P(cherry) = 0.25
- · After 3 limes
 - MAP incorrectly predicts h₅
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

CS786 Lecture Slides (c) 2012 P. Poupart

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

CS786 Lecture Slides (c) 2012 P. Poupart

17

MAP computation

- · Optimization:
 - h_{MAP} = $argmax_h P(h|d)$ = $argmax_h P(h) P(d|h)$ = $argmax_h P(h) \Pi_i P(d_i|h)$
- Product induces non-linear optimization
- Take the log to linearize optimization
 - h_{MAP} = argmax_h log P(h) + Σ_i log P(d_i|h)

CS786 Lecture Slides (c) 2012 P. Poupart

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $P(h_i) = P(h_j) \forall i,j$)
 - h_{MAP} = $argmax_h P(h) P(d|h)$
 - $-h_{ML} = argmax_h P(\mathbf{d}|h)$
- Make prediction based on h_{MI} only:
 - $P(X|d) \approx P(X|h_{ML})$

CS786 Lecture Slides (c) 2012 P. Poupart

19

Candy Example (ML)

- Prediction after
 - 1 lime: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
 - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$
 - -
- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior = uniform prior)

CS786 Lecture Slides (c) 2012 P. Poupart

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - h_{ML} = $argmax_h \Sigma_i log P(d_i|h)$

CS786 Lecture Slides (c) 2012 P. Poupart

21

Statistical Learning

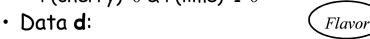
- Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known

CS786 Lecture Slides (c) 2012 P. Poupart

- Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_θ:
 - P(cherry)= θ & P(lime)= $1-\theta$





- $\boldsymbol{\theta}$ is relative frequency of observed data
- $-\theta = c/(c+1)$
- P(cherry) = c/(c+1) and P(lime) = 1/(c+1)

CS786 Lecture Slides (c) 2012 P. Poupart

23

 $\frac{P(F=cherry)}{\Theta}$

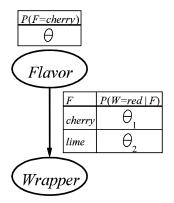
ML computation

- · 1) Likelihood expression
 - $P(\mathbf{d}|\mathbf{h}_{\theta}) = \theta^{c} (1-\theta)^{l}$
- · 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + l \log (1-\theta)$
- · 3) log likelihood derivative
 - $d(\log P(\mathbf{d}|h_{\theta}))/d\theta = c/\theta I/(1-\theta)$
- · 4) ML hypothesis
 - $c/\theta 1/(1-\theta) = 0 \Rightarrow \theta = c/(c+1)$

CS786 Lecture Slides (c) 2012 P. Poupart

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- · Data:
 - c cherries
 - $\cdot g_c$ green wrappers
 - r_c red wrappers
 - | limes
 - g₁ green wrappers
 - · r₁ red wrappers



CS786 Lecture Slides (c) 2012 P. Poupart

25

ML computation

- · 1) Likelihood expression
 - $\ \mathsf{P}(\mathsf{d} | \, \mathsf{h}_{\boldsymbol{\theta},\boldsymbol{\theta}_1,\boldsymbol{\theta}_2}) = \boldsymbol{\theta}^\mathsf{c}(1 \boldsymbol{\theta})^\mathsf{l} \, \boldsymbol{\theta}_1^\mathsf{r}_\mathsf{c}(1 \boldsymbol{\theta}_1)^\mathsf{g}_\mathsf{c} \, \boldsymbol{\theta}_2^\mathsf{r}_\mathsf{l}(1 \boldsymbol{\theta}_2)^\mathsf{g}_\mathsf{l}$
- ..
- · 4) ML hypothesis

$$- c/\theta - 1/(1-\theta) = 0 \implies \theta = c/(c+1)$$

$$- r_c/\theta_1 - g_c/(1-\theta_1) = 0 \Rightarrow \theta_1 = r_c/(r_c+g_c)$$

$$-r_1/\theta_2 - g_1/(1-\theta_2) = 0 \rightarrow \theta_2 = r_1/(r_1+g_1)$$

CS786 Lecture Slides (c) 2012 P. Poupart

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- · Parameters:
 - θ = P(C=true)
 - θ_{i1} = P(A_i =true|C=true)
 - θ_{i2} = P(A_i =true|C=false)
- · Assumption: Ai's are independent given C

CS786 Lecture Slides (c) 2012 P. Poupart

27

Naïve Bayes model for Restaurant Problem

Data:

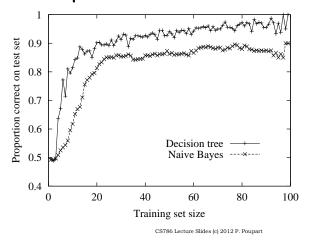
Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	Т	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	т	Т	т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

- · ML sets
 - θ to relative frequencies of wait and ~wait
 - θ_{i1}, θ_{i2} to relative frequencies of each attribute value given *wait* and *~wait*

CS786 Lecture Slides (c) 2012 P. Poupart

Naïve Bayes model vs decision trees

Wait prediction for restaurant problem



Why is naïve Bayes less accurate than decision tree?

29

Bayesian network parameter learning (ML)

- Parameters $\theta_{V,pa(V)=v}$:
 - CPTs: $\theta_{V,pa(V)=v} = P(V|pa(V)=v)$
- Data **d**:
 - d_1 : $\langle V_1 = V_{1,1}, V_2 = V_{2,1}, ..., V_n = V_{n,1} \rangle$
 - d_2 : $\langle V_1 = v_{1,2}, V_2 = v_{2,2}, ..., V_n = v_{n,2} \rangle$

- ...

- Maximum likelihood:
 - Set $\theta_{V,pa(V)=v}$ to the relative frequencies of the values of V given the values ${\bf v}$ of the parents of V

CS786 Lecture Slides (c) 2012 P. Poupart