CS786 Lecture 22: July 17, 2012

Deep Learning

CS786 (c) 2012 P. Poupart

1

Deep Learning

- Definition: training of graphical models (Bayes net, Markov net or neural net) with several layers of hidden nodes
 - Can learn expressive models
- Problems:
 - Non-convex optimization
 - Local optima
 - Vanishing gradient
 - Only top layers tend to be learned

CS786 (c) 2012 P. Poupart

2

Deep Belief Networks

• Picture

- Nodes: sigmoid units
- Network: mix of directed and undirected edges

CS786 (c) 2012 P. Poupart

3

Greedy Layer-wise Training

Algorithm

Construct RBM with input layer v and hidden layer h_1 $\boldsymbol{W}^{(1)} \leftarrow$ Train the RBM for \boldsymbol{h}_1 with data for v For i=2 to n Add a layer of hidden units \boldsymbol{h}_i with RBM architecture Fix $\boldsymbol{W}^{(i-1)}$ and sample \boldsymbol{h}_{i-1} from $\Pr(\boldsymbol{h}_{i-1}|v)$ $\boldsymbol{W}^{(i)} \leftarrow$ Train the RBM for \boldsymbol{h}_i with data sampled for \boldsymbol{h}_{i-1}

Supervised learning: adjust all weights by gradient descent

CS786 (c) 2012 P. Poupart

1

Greedy Layer-wise Training

• Picture

CS786 (c) 2012 P. Poupart

5

Greedy Layer-wise Training

- Does not suffer from vanishing gradients
 - Greedy training
- Circumvents local optima
 - Each additional layer creates new dimensions to escape local optima
- Guarantee
 - Each layer improves log likelihood

$$\log P(v) \ge H_{P(h|v)} + \sum_{h} P(h|v) (\log P(h) + \log P(v|h))$$

Trained by the second layer RBM

CS786 (c) 2012 P. Poupart

6