CS786 Lecture 20: July 10th, 2012

Neural Networks
[Bishop, Pattern Recognition and Machine Learning] Sections 5.2, 5.3

CS786 (c) 2012 P. Poupart

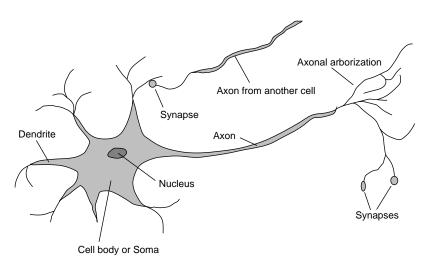
1

Outline

- Neural networks
- Sigmoid belief networks
 - Feed-forward neural networks with sigmoid activation function
 - Bayesian network
- Deep belief networks
 - Recurrent neural networks with sigmoid activation function
 - Markov networks

CS786 (c) 2012 P. Poupart

Neuron



CS786 (c) 2012 P. Poupart

3

Artificial Neural Networks

- Idea: mimic the brain to do computation
- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

CS786 (c) 2012 P. Poupart

ANN Unit

- For each unit *j*:
- Weights: W
 - Strength of the link from unit i to unit j
 - Input signals x_i weighted by W_{ji} and linearly combined: $a_j = \sum_i W_{ji} \ x_i + w_0 = \pmb{W_j^T \overline{x}}$
- Activation function: h
 - Numerical signal produced: $y_j = h(a_j)$

CS786 (c) 2012 P. Poupart

5

ANN Unit

• Picture

CS786 (c) 2012 P. Poupart

Activation Function

- Should be nonlinear
 - Otherwise network is just a linear function
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

CS786 (c) 2012 P. Poupart

7

Common Activation Functions

Threshold

Sigmoid

Other activation functions: Identity:
$$h(a)=a$$
 Gaussian: $h(a)=e^{-\frac{1}{2}\left(\frac{a-\mu}{\sigma}\right)^2}$ Tanh: $h(a)=\frac{e^a-e^{-a}}{e^a+e^{-a}}$

CS786 (c) 2012 P. Poupart

Network Structures

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

CS786 (c) 2012 P. Poupart

9

Two-Layer Architecture

Feed-forward neural network

- Hidden units: $z_j = h_1(\mathbf{w}_j^{(1)}\overline{\mathbf{x}})$
- Output units: $y_k = h_2(\boldsymbol{w}_k^{(2)}\bar{\boldsymbol{z}})$
- Overall: $y_k = h_2 \left(\sum_j w_{kj}^{(2)} h_1 \left(\sum_i w_{ji}^{(1)} x_i \right) \right)$

CS786 (c) 2012 P. Poupart

Weight training

- Parameters: $< W^{(1)}, W^{(2)}, ... >$
 - Where $\boldsymbol{W}^{(i)}$ is the matrix of weights in layer i
- Objectives:
 - Error minimization
 - Backpropagation (aka "backprop")
 - Maximum likelihood
 - Maximum a posteriori
 - Bayesian learning

CS786 (c) 2012 P. Poupart

11

Least squared error

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} \left| \left| f(\mathbf{x}_{n}, \mathbf{W}) - y_{n} \right| \right|_{2}^{2}$$

- Where n is an index denoting each data point (x_n, y_n)
- f(x, W) is the function computed by the neural network
 - E.g., two layer network with sigmoid activation functions

$$f(\mathbf{x}, \mathbf{W}) = \sigma \left(\sum_{j} w_{kj}^{(2)} \sigma \left(\sum_{i} w_{ji}^{(1)} x_{i} \right) \right)$$

CS786 (c) 2012 P. Poupart

Sequential Gradient Descent

• For each example (x_n, y_n) adjust the weights as follows:

$$w_{ji} \leftarrow w_{ji} - \eta \frac{\partial E_n}{\partial w_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm

CS786 (c) 2012 P. Poupart

13

Backpropagation Algorithm

- Two phases:
 - Forward phase: compute output z_i of each unit j
 - Backward phase: compute delta δ_{i} at each unit j

CS786 (c) 2012 P. Poupart

Forward phase

- Propagate inputs forward to compute the output of each unit
- Output z_i at unit j:

$$z_j = h(a_j)$$
 where $a_j = \sum_i w_{ji} z_i$

CS786 (c) 2012 P. Poupart

15

Backward phase

• Use chain rule to recursively compute gradient

– For each weight
$$w_{ji}$$
: $\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$

$$-\operatorname{Let}rac{\partial E_n}{\partial a_j}\equiv \delta_j$$
 then

$$\delta_j = \begin{cases} h'(a_j) \big(y_j - z_j \big) & \text{base case: } j \text{ is an output unit} \\ h'(a_j) \sum_k w_{kj} \delta_k & \text{recursion: } j \text{ is a hidden unit} \end{cases}$$

– Since
$$a_j = \sum_i w_{ji} z_i$$
 then $\frac{\partial a_j}{\partial w_{ji}} = z_i$

CS786 (c) 2012 P. Poupart

Simple Example

- Consider a network with two layers:
 - Hidden nodes: $h(a) = \tanh(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
 - Tip: $tanh'(a) = 1 (tanh(a))^2$
 - Output node: h(a) = a
- Objective: squared error

CS786 (c) 2012 P. Poupart

17

Simple Example

- Forward propagation:
 - Hidden units: $a_j =$

 $z_j =$

– Output units: $a_k =$

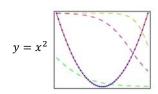
 $z_k =$

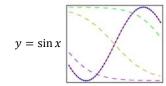
- Backward propagation:
 - Output units: $\delta_k =$
 - Hidden units: $\delta_i =$
- Gradients:
 - Hidden layers: $\frac{\partial E_n}{\partial w_{ji}} =$
 - Output layer: $\frac{\partial E_n}{\partial w_{kj}}$ =

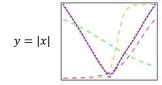
CS786 (c) 2012 P. Poupart

Non-linear regression examples

- Two layer network:
 - 3 tanh hidden units and 1 identity output unit







$$y = \int_{-\infty}^{x} \delta(t) dt$$

CS786 (c) 2012 P. Poupart

10

Analysis

- Efficiency:
 - Fast gradient computation: linear in number of weights
- Convergence:
 - Slow convergence (linear rate)
 - May get trapped in local optima
- Prone to overfitting
 - Solutions: early stopping, regularization (add $||w||_2^2$ penalty term to objective)

CS786 (c) 2012 P. Poupart