CS489/698 Lecture 8: Jan 29, 2018

Perceptrons, Neural Networks

[D] Chapt. 4, [HTF] Chapt. 11, [B] Sec. 4.1.7, 5.1, [M] Sec. 8.5.4, [RN] Sec. 18.7

Outline

- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

Brain

- Seat of human intelligence
- Where memory/knowledge resides
- Responsible for thoughts and decisions
- Can learn
- Consists of nerve cells called neurons

Neuron

Comparison

Brain

- Network of neurons
- Nerve signals propagate in a neural network
- Parallel computation
- Robust (neurons die everyday without any impact)

Computer

- Bunch of gates
- Electrical signals directed by gates
- Sequential and parallel computation
- Fragile (if a gate stops working, computer crashes)

Artificial Neural Networks

- Idea: mimic the brain to do computation
- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

For each unit i:

Weights: W

- Strength of the link from unit i to unit j
- Input signals x_i weighted by W_{ji} and linearly combined: $a_i = \sum_i W_{ii} x_i + w_0 = W_i \overline{x}$

Activation function: h

- Numerical signal produced: $y_j = h(a_j)$

ANN Unit

• Picture

Activation Function

- Should be nonlinear
 - Otherwise network is just a linear function
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold

Sigmoid

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean functions
- What should be the weights of the following units to code AND, OR, NOT?

Network Structures

Feed-forward network

- Directed acyclic graph
- No internal state
- Simply computes outputs from inputs

Recurrent network

- Directed cyclic graph
- Dynamical system with internal states
- Can memorize information

Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit

Perceptron

Single layer feed-forward network

Supervised Learning

- Given list of (x, y) pairs
- Train feed-forward ANN
 - To compute proper outputs y when fed with inputs x
 - Consists of adjusting weights W_{ii}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- Learning is done separately for each unit j
 - Since units do not share weights
- Perceptron learning for unit j:
 - For each (x, y) pair do:
 - Case 1: correct output produced

$$\forall_i \ W_{ji} \leftarrow W_{ji}$$

Case 2: output produced is 0 instead of 1

$$\forall_i W_{ii} \leftarrow W_{ii} + x_i$$

Case 3: output produced is 1 instead of 0

$$\forall_i W_{ii} \leftarrow W_{ii} - x_i$$

Until correct output for all training instances

Threshold Perceptron Learning

- Dot products: $\overline{x}^T \overline{x} \ge 0$ and $-\overline{x}^T \overline{x} \le 0$
- Perceptron computes

1 when
$$\mathbf{w}^T \overline{\mathbf{x}} = \sum_i x_i w_i + w_0 > 0$$

0 when $\mathbf{w}^T \overline{\mathbf{x}} = \sum_i x_i w_i + w_0 < 0$

- If output should be 1 instead of 0 then $w \leftarrow w + \overline{x}$ since $(w + \overline{x})^T \overline{x} \ge w^T \overline{x}$
- If output should be 0 instead of 1 then

$$w \leftarrow w - \overline{x}$$
 since $(w - \overline{x})^T \overline{x} \le w^T \overline{x}$

Alternative Approach

- Let $y \in \{-1,1\} \forall y$
- Let $M = \{(x_n, y_n)_{\forall n}\}$ be set of misclassified examples i.e., $y_n w^T \overline{x}_n < 0$
- Find w that minimizes misclassification

$$E(\mathbf{w}) = -\sum_{(\mathbf{x}_n, \mathbf{y}_n) \in M} y_n \mathbf{w}^T \overline{\mathbf{x}}_n$$

Algorithm: gradient descent

$$w \leftarrow w - \eta \nabla E$$

learning rate

or step length

Sequential Gradient Descent

• Gradient:
$$\nabla E = -\sum_{(x_n, y_n) \in M} y_n \overline{x}_n$$

- Sequential gradient descent:
 - Adjust w based on one example (x, y) at a time

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta y \overline{\boldsymbol{x}}$$

• When $\eta=1$, we recover the threshold perceptron learning algorithm

Threshold Perceptron Hypothesis Space

- Hypothesis space h_w :
 - All binary classifications with parameters w s.t.

$$w^T \overline{x} > 0 \to +1$$
$$w^T \overline{x} < 0 \to -1$$

- Since $w^T \overline{x}$ is linear in w, perceptron is called a **linear** separator
- Theorem: Threshold perceptron learning converges iff the data is linearly separable

Linear Separability

• Examples:

Linearly separable

Non-linearly separable

Sigmoid Perceptron

- Represent "soft" linear separators
- Same hypothesis space as logistic regression

Sigmoid Perceptron Learning

- Possible objectives
 - Minimum squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{w})^{2} = \frac{1}{2} \sum_{n} \left(y_{n} - \sigma(\mathbf{w}^{T} \overline{\mathbf{x}}_{n}) \right)^{2}$$

- Maximum likelihood
 - Same algorithm as for logistic regression
- Maximum a posteriori hypothesis
- Bayesian Learning

Gradient

Gradient:

$$\begin{split} \frac{\partial E}{\partial w_i} &= \sum_n E_n(w) \frac{\partial E_n}{\partial w_i} \\ &= -\sum_n E_n(w) \sigma'(w^T \bar{x}_n) x_i \\ \text{Recall that } \sigma' &= \sigma (1 - \sigma) \\ &= -\sum_n E_n(w) \sigma(w^T \bar{x}_n) \left(1 - \sigma(w^T \bar{x}_n)\right) x_i \end{split}$$

Sequential Gradient Descent

- Perceptron-Learning(examples,network)
 - Repeat
 - For each (x_n, y_n) in examples do $E_n \leftarrow y_n \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n)$ $\mathbf{w} \leftarrow \mathbf{w} + \eta \ E_n \ \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n) \left(1 \sigma(\mathbf{w}^T \overline{\mathbf{x}}_n)\right) \ \overline{\mathbf{x}}_n$
 - Until some stopping criterion satisfied
 - Return learnt network
- N.B. η is a learning rate corresponding to the step size in gradient descent

Multilayer Networks

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge

Multilayer Networks

 Adding two intersecting ridges (and thresholding) produces a bump

Network output

Multilayer Networks

 By tiling bumps of various heights together, we can approximate any function

- Training algorithm:
 - Back-propagation
 - Essentially sequential gradient descent performed by propagating errors backward into the network
 - Derivation next class

Neural Net Applications

- Neural nets can approximate any function, hence millions of applications
 - Speech recognition
 - Vision-based object recognition
 - Word embeddings
 - Vision-based autonomous driving
 - Etc.