Perceptrons, Neural Networks

[D] Chapt. 4, [HTF] Chapt. 11, [B] Sec. 4.1.7, 5.1, [M] Sec. 8.5.4, [RN] Sec. 18.7
Outline

• Neural networks
 – Perceptron
 – Supervised learning algorithms for neural networks
Brain

- Seat of human intelligence
- Where memory/knowledge resides
- Responsible for thoughts and decisions
- Can learn
- Consists of nerve cells called **neurons**
Neuron

- Axonal arborization
- Axon from another cell
- Synapse
- Dendrite
- Nucleus
- Cell body or Soma
- Synapses
Comparison

• Brain
 – Network of neurons
 – Nerve signals propagate in a neural network
 – Parallel computation
 – Robust (neurons die everyday without any impact)

• Computer
 – Bunch of gates
 – Electrical signals directed by gates
 – Sequential and parallel computation
 – Fragile (if a gate stops working, computer crashes)
Artificial Neural Networks

• Idea: **mimic the brain to do computation**

• Artificial neural network:
 – Nodes (a.k.a. units) correspond to neurons
 – Links correspond to synapses

• Computation:
 – Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 – Nodes modifying numerical signal corresponds to neurons firing rate
ANN Unit

• For each unit i:

• **Weights: \(W \)**
 – Strength of the link from unit \(i \) to unit \(j \)
 – Input signals \(x_i \) weighted by \(W_{ji} \) and linearly combined:
 \[
 a_j = \sum_i W_{ji} x_i + w_0 = W_j \bar{x}
 \]

• **Activation function: \(h \)**
 – Numerical signal produced: \(y_j = h(a_j) \)
ANN Unit

• Picture
Activation Function

• Should be nonlinear
 – Otherwise network is just a linear function

• Often chosen to mimic firing in neurons
 – Unit should be “active” (output near 1) when fed with the “right” inputs
 – Unit should be “inactive” (output near 0) when fed with the “wrong” inputs
Common Activation Functions

Threshold

Sigmoid
Logic Gates

• McCulloch and Pitts (1943)
 – Design ANNs to represent Boolean functions

• What should be the weights of the following units to code AND, OR, NOT?
Network Structures

• **Feed-forward network**
 – Directed **acyclic** graph
 – No internal state
 – Simply computes outputs from inputs

• **Recurrent network**
 – Directed **cyclic** graph
 – Dynamical system with internal states
 – Can memorize information
Feed-forward network

- Simple network with two inputs, one hidden layer of two units, one output unit
Perceptron

• Single layer feed-forward network
Supervised Learning

- Given list of \((x, y)\) pairs
- Train feed-forward ANN
 - To compute proper outputs \(y\) when fed with inputs \(x\)
 - Consists of adjusting weights \(W_{ji}\)
- Simple learning algorithm for threshold perceptrons
Threshold Perceptron Learning

• Learning is done separately for each unit j
 – Since units do not share weights

• Perceptron learning for unit j:
 – For each (x, y) pair do:
 • Case 1: correct output produced
 $\forall i W_{ji} \leftarrow W_{ji}$
 • Case 2: output produced is 0 instead of 1
 $\forall i W_{ji} \leftarrow W_{ji} + x_i$
 • Case 3: output produced is 1 instead of 0
 $\forall i W_{ji} \leftarrow W_{ji} - x_i$
 – Until correct output for all training instances
Threshold Perceptron Learning

• Dot products: $x^T x \geq 0$ and $-x^T x \leq 0$

• Perceptron computes

 1 when $w^T x = \sum_i x_i w_i + w_0 > 0$
 0 when $w^T x = \sum_i x_i w_i + w_0 < 0$

• If output should be 1 instead of 0 then

 $w \leftarrow w + x$ since $(w + x)^T x \geq w^T x$

• If output should be 0 instead of 1 then

 $w \leftarrow w - x$ since $(w - x)^T x \leq w^T x$
Alternative Approach

• Let \(y \in \{-1,1\} \quad \forall y \)
• Let \(M = \{(x_n, y_n) \}_{\forall n} \) be set of misclassified examples
 – i.e., \(y_n w^T \bar{x}_n < 0 \)

• Find \(w \) that minimizes misclassification

\[
E(w) = - \sum_{(x_n,y_n) \in M} y_n w^T \bar{x}_n
\]

• Algorithm: gradient descent

\[
w \leftarrow w - \eta \nabla E
\]

learning rate or step length
Sequential Gradient Descent

- Gradient: $\nabla E = - \sum_{(x_n, y_n) \in M} y_n x_n$

- Sequential gradient descent:
 - Adjust w based on one example (x, y) at a time
 $$ w \leftarrow w + \eta y x $$

- When $\eta = 1$, we recover the threshold perceptron learning algorithm
Threshold Perceptron
Hypothesis Space

• Hypothesis space h_w:

 – All binary classifications with parameters w s.t.

 $w^T \bar{x} > 0 \rightarrow +1$

 $w^T \bar{x} < 0 \rightarrow -1$

• Since $w^T \bar{x}$ is linear in w, perceptron is called a **linear separator**

• **Theorem:** Threshold perceptron learning converges iff the data is linearly separable
Linear Separability

• Examples:

 Linearly separable Non-linearly separable
Sigmoid Perceptron

- Represent “soft” linear separators
- Same hypothesis space as logistic regression
Sigmoid Perceptron Learning

• Possible objectives
 – Minimum squared error
 \[E(w) = \frac{1}{2} \sum_n E_n(w)^2 = \frac{1}{2} \sum_n (y_n - \sigma(w^T \bar{x}_n))^2 \]
 – Maximum likelihood
 • Same algorithm as for logistic regression
 – Maximum a posteriori hypothesis
 – Bayesian Learning
Gradient

- Gradient:

\[
\frac{\partial E}{\partial w_i} = \sum_n E_n(w) \frac{\partial E_n}{\partial w_i} = - \sum_n E_n(w) \sigma'(w^T \bar{x}_n)x_i
\]

Recall that \(\sigma' = \sigma(1 - \sigma)\)

\[
= - \sum_n E_n(w) \sigma(w^T \bar{x}_n)(1 - \sigma(w^T \bar{x}_n))x_i
\]
Sequential Gradient Descent

• Perceptron-Learning(examples, network)
 – Repeat
 • For each \((x_n, y_n)\) in examples do
 \[E_n \leftarrow y_n - \sigma(w^T \bar{x}_n) \]
 \[w \leftarrow w + \eta E_n \sigma(w^T \bar{x}_n) \left(1 - \sigma(w^T \bar{x}_n) \right) \bar{x}_n \]
 – Until some stopping criterion satisfied
 – Return learnt network

• N.B. \(\eta\) is a learning rate corresponding to the step size in gradient descent
Multilayer Networks

• Adding two sigmoid units with parallel but opposite “cliffs” produces a ridge

![Network output graph]
Multilayer Networks

- Adding two intersecting ridges (and thresholding) produces a bump
Multilayer Networks

• By tiling bumps of various heights together, we can approximate any function

• Training algorithm:
 – **Back-propagation**
 – Essentially sequential gradient descent performed by propagating errors backward into the network
 – Derivation next class
Neural Net Applications

• Neural nets can approximate any function, hence millions of applications
 – Speech recognition
 – Vision-based object recognition
 – Word embeddings
 – Vision-based autonomous driving
 – Etc.