Bagging and Distributed Computing

Boosting vs Bagging

• Review
Independent classifiers/predictors

• How can we obtain independent classifiers/predictors for bagging?

• Bootstrap sampling
 – Sample (without replacement) subset of data

• Random projection
 – Sample (without replacement) subset of features

• Learn different classifiers/predictors based on each data subset and feature subset
Bagging

For $k = 1$ to K

\[D_k \leftarrow \text{sample data subset} \]
\[F_k \leftarrow \text{sample feature subset} \]
\[h_k \leftarrow \text{train classifier/predictor based on } D_k \text{ and } F_k \]

Classification: $\text{majority}(h_1(x), \ldots, h_K(x))$
Regression: $\text{average}(h_1(x), \ldots, h_K(x))$

Random forest: bag of decision trees
Application: Xbox 360 Kinect

- Microsoft Cambridge
- Body part recognition: supervised learning
Depth camera

- Kinect

Infrared image Gray scale depth map
Kinect Body Part Recognition

- Problem: label each pixel with a body part
Kinect Body Part Recognition

• Features: depth differences between pairs of pixels

• Classification: forest of decision trees
Large Scale Machine Learning

• Big data
 – Large number of data instances
 – Large number of features

• Solution: distribute computation (parallel computation)
 – GPU (Graphics Processing Unit)
 – Many cores
GPU computation

• Many Machine Learning algorithms consist of vector, matrix and tensor operations
 – A tensor is a multidimensional array

• GPU (Graphics Processing Units) can perform arithmetic operations on all elements of a tensor in parallel

• Packages that facilitate ML programming on GPUs: Keras, PyTorch, TensorFlow, Theano, Caffe, DL4J
Multicore Computation

• Idea: Train a different classifier/predictor with a subset of the data on each core

• How can we combine the classifiers/predictors?
• Should we take the average of the parameters of the classifiers/predictors?

No, this might lead to a worse classifier/predictor. This is especially problematic for models with hidden variables/units such as neural networks and hidden Markov models
Bad case of parameter averaging

• Consider two threshold neural networks that encode the exclusive-or Boolean function

• Averaging the weights yields a new neural network that does not encode exclusive-or
Safely Combining Predictions

• A safe approach to ensemble learning is to combine the predictions (not the parameters)

• Classification: majority vote of the classes predicted by the classifiers

• Regression: average of the predictions computed by the regressors