Ensemble Learning

[RN] Sec. 18.10, [M] Sec. 16.2.5,
[B] Chap. 14, [HTF] Chap 15-16,
[D] Chap. 11
Outline

• Ensemble Learning
 – Bagging
 – Boosting
Supervised Learning

• So far...
 – K-nearest neighbours
 – Mixture of Gaussians
 – Logistic regression
 – Support vector machines
 – HMMs
 – Perceptrons
 – Neural networks

• Which technique should we pick?
Ensemble Learning

• Sometimes each learning technique yields a different hypothesis
• But no perfect hypothesis...
• Could we combine several imperfect hypotheses into a better hypothesis?
Ensemble Learning

• Analogies:
 – Elections combine voters’ choices to pick a good candidate
 – Committees combine experts’ opinions to make better decisions

• Intuitions:
 – Individuals often make mistakes, but the “majority” is less likely to make mistakes.
 – Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.
Ensemble Learning

• Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis

• Can enlarge hypothesis space
 – Perceptrons
 • linear separators
 – Ensemble of perceptrons
 • polytope
Bagging

- Majority Voting

For the classification to be wrong, at least 3 out of 5 hypotheses have to be wrong.

Majority Voting

\[\text{Majority}(h_1(x), h_2(x), h_3(x), h_4(x), h_5(x)) \]

For the classification to be wrong, at least 3 out of 5 hypotheses have to be wrong.
Bagging

• Assumptions:
 – Each h_i makes error with probability p
 – The hypotheses are independent

• Majority voting of n hypotheses:
 – k hypotheses make an error: $\binom{n}{k} p^k (1-p)^{n-k}$
 – Majority makes an error: $\sum_{k>n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 – With $n=5$, $p=0.1 \implies \text{err(majority)} < 0.01$
Weighted Majority

• In practice
 – Hypotheses rarely independent
 – Some hypotheses have less errors than others

• Let’s take a weighted majority

• Intuition:
 – Decrease weight of correlated hypotheses
 – Increase weight of good hypotheses
Boosting

• Very popular ensemble technique
• Computes a weighted majority
• Can “boost” a “weak learner”
• Operates on a weighted training set
Weighted Training Set

• Learning with a weighted training set
 – Supervised learning \rightarrow minimize train. error
 – Bias algorithm to learn correctly instances with high weights

• Idea: when an instance is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly
Boosting Framework

- Set all instance weights w_x to 1
- Repeat
 - $h_i \leftarrow \text{learn}(\text{dataset, weights})$
 - Increase w_x of misclassified instances x
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h_i’s with weights w_i proportional to the accuracy of h_i
Boosting Framework
AdaBoost (Adaptive Boosting)

- \(w_j \leftarrow 1/N \quad \forall_j \)
- For \(m=1 \) to \(M \) do
 - \(h_m \leftarrow \text{learn(dataset,w)} \)
 - \(\text{err} \leftarrow 0 \)
 - For each \((x_j,y_j)\) in dataset do
 - If \(h_m(x_j) \neq y_j \) then \(\text{err} \leftarrow \text{err} + w_j \)
 - For each \((x_j,y_j)\) in dataset do
 - If \(h_m(x_j) = y_j \) then \(w_j \leftarrow w_j \text{err} / (1-\text{err}) \)
 - \(w \leftarrow \text{normalize}(w) \)
 - \(z_m \leftarrow \log \left(\frac{(1-\text{err})}{\text{err}} \right) \)
- Return \text{weighted-majority}(h,z)
What can we boost?

• **Weak learner:** produces hypotheses at least as good as random classifier.

• **Examples:**
 – Rules of thumb
 – Decision stumps (decision trees of one node)
 – Perceptrons
 – Naïve Bayes models
Boosting Paradigm

• **Advantages**
 – No need to learn a perfect hypothesis
 – Can boost any weak learning algorithm
 – Boosting is very simple to program
 – Good generalization

• **Paradigm shift**
 – Don’t try to learn a perfect hypothesis
 – Just learn simple rules of thumbs and boost them
Boosting Paradigm

• When we already have a bunch of hypotheses, boosting provides a principled approach to combine them

• Useful for
 – Sensor fusion
 – Combining experts
Applications

• Any supervised learning task
 – Collaborative filtering (Netflix challenge)
 – Body part recognition (Kinect)
 – Spam filtering
 – Speech recognition/natural language processing
 – Data mining
 – Etc.
Netflix Challenge

- Problem: predict movie ratings based on database of ratings by previous users

- Launch: 2006
 - Goal: improve Netflix predictions by 10%
 - Grand Prize: 1 million $
Progress

• 2007: BellKor 8.43% improvement

• 2008:
 – No individual algorithm improves by > 9.43%
 – Top two teams BellKor and BigChaos unite
 • Start of ensemble learning
 • Jointly improve by > 9.43%

• June 26, 2009:
 – Top 3 teams BellKor, BigChaos and Pragmatic unite
 – Jointly improve > 10%
 – 30 days left for anyone to beat them
The Ensemble

• Formation of “Grand Prize Team”:
 – Anyone could join
 – Share of $1 million grand prize proportional to improvement in team score
 – Improvement: 9.46%

• 5 days to the deadline
 – “The Ensemble” team is born
 • Union of Grand Prize team and Vanderlay Industries
 • Ensemble of many researchers
Finale

• Last Day: July 26, 2009

• 6:18 pm:
 – BellKor’s Pragmatic Chaos: 10.06% improv.

• 6:38 pm:
 – The Ensemble: 10.06% improvement

• Tie breaker: time of submission