CS489/698
Lecture 17: March 7, 2018

Convolutional Neural Networks

[GBC] Chap. 9
Large networks

• What kind of neural networks can be used for large or variable length input vectors (e.g., time series)?

• Common networks:
 – Convolutional networks
 – Recursive networks
 – Recurrent networks
Convolution

• Convolution: mathematical operation on two functions \(x() \) and \(w() \) that produces a third function \(y() \) that can be viewed as a modified version of one of the original functions \(x() \)

\[
y(i) = \int_{t} x(t)w(i - t)dt
\]

\[
y(i) = (x * w)(t)
\]

Where \(* \) is an operator denoting a convolution
Example Smoothing
Discrete convolution

• Discrete convolution

\[y(i) = \sum_{t=-\infty}^{\infty} x(t)w(i - t) \]

• Multidimensional convolution

\[y(i, j) = \sum_{t_1=-\infty}^{\infty} \sum_{t_2=-\infty}^{\infty} x(t_1, t_2)w(i - t_1, j - t_2) \]
Example: Edge Detection

- Consider a grey scale image
- Detect vertical edges: \(y(i, j) = x(i, j) - x(i - 1, j) \)

\[
\text{hence } w(i - t_1, j - t_2) = \begin{cases}
1 & t_1 = i, t_2 = j \\
-1 & t_1 = i + 1, t_2 = j \\
0 & \text{otherwise}
\end{cases}
\]
Convolutions for feature extraction

• In neural networks
 – A convolution denotes the linear combination of a subset of units based on a specific pattern of weights.

\[
a_j = \sum_i w_{ji} z_i
\]

 – Convolutions are often combined with an activation function to produce a feature

\[
z_j = h(a_j) = h\left(\sum_i w_{ji} z_i\right)
\]
Gabor filters

• Gabor filters: common feature maps inspired by the human vision system

• Weights:
 - Grey: zero
 - White: positive
 - Black: negative
Convolution Neural Network

• A convolutional neural network refers to any network that includes an alternation of convolution and pooling layers, where some of the convolution weights are shared.

• Architecture:
Pooling

• Pooling: **commutative** mathematical operation that combines several units

• Examples:
 – Max, sum, product, Euclidean norm, etc.

• Commutative property (order does not matter):
 \[\max(a, b) = \max(b, a) \]
Example: Digit Recognition

max pooling

max pooling

fully connected classification
Benefits

• Sparse interactions
 – Fewer connections

• Parameter sharing
 – Fewer weights

• Locally equivariant representation
 – Locally invariant to translations
 – Handle inputs of varying length
Parameters

- **# of filters**: integer indicating the # of filters applied to each window.
- **Kernel size**: tuple (width, height) indicating the size of the window.
- **Stride**: tuple (horizontal, vertical) indicating the horizontal and vertical shift between each window.
- **Padding**: “valid” or “same”. Valid indicates no input padding. Same indicates that the input is padded with a border of zeros to ensure that the output has the same size as the input.
Examples
Training

• Convolutional neural networks are trained in the same way as other neural networks
 – E.g., backpropagation

• Weight sharing:
 – Combine gradients of shared weights into a single gradient
Applications

• Image processing
• Data with sequential, spatial, or tensor patterns