Support Vector Machines (continued)

[B] Sec. 7.1 [D] Sec. 11.5-11.6 [HTF]
Chap. 12 [M] Sec. 14.5 [RN] 18.9 [MRT]
Chap. 4
Overlapping Class Distributions

• So far we assumed that data is linearly separable
 – High dimensions help for linear separability, but may hurt for generalization

• But what if the data is noisy (mistakes or outliers)
 – Constraints should allow misclassifications

• Picture
Soft margin

• Idea: relax constraints by introducing slack variables
 \[\xi_n \geq 0 \]
 \[y_n \mathbf{w}^T \phi(x_n) \geq 1 - \xi_n \quad \forall n \]

• Picture:
Soft margin classifier

• New optimization problem:

\[
\min_{w, \xi} C \sum_{n=1}^{N} \xi_n + \frac{1}{2} \|w\|^2
\]

s.t. \(y_n w^T \phi(x_n) \geq 1 - \xi_n \)

and \(\xi_n \geq 0 \) \(\forall n \)

• where \(C > 0 \) controls the trade-off between the slack variable penalty and the margin
Soft margin classifier

• Notes:
 1. Since $\sum_n \xi_n$ is an upper bound on the # of misclassifications, C can also be thought as a regularization coefficient that controls the trade-off between error minimization and model complexity
 2. When $C \to \infty$, then we recover the original hard margin classifier
 3. Soft margins handle minor misclassifications, but the classifier is still very sensitive to outliers
Support Vectors

• As before support vectors correspond to active constraints
 \[y_n \mathbf{w}^T \phi(x_n) = 1 - \xi_n \]
 – i.e., all points that are in the margin or misclassified

• Picture:
Multiclass SVMs

• Three methods:
 1. One-against-all: for K classes, train K SVMs to distinguish each class from the rest
 2. Pairwise comparison: train $O(K^2)$ SVMs to compare each pair of classes
 3. Continuous ranking: single SVM that returns a continuous value to rank all classes
One-Against-All

• For K classes, train K SVMs to distinguish each class from the rest

• Picture:

• Problem: what if different classes are returned by different SVMs?
Pairwise Comparison

• Train $O(K^2)$ SVMs to compare each pair of classes
• Picture:

• Problem: how do we pick the best class?
Continuous Ranking

- Single SVM that returns a continuous value to rank all classes
- Picture:

- Most popular approach today
Continuous Ranking

• Idea: instead of computing the sign of a linear separator, compare the values of linear functions for each class \(k \)

• Classification:

\[
y_\text{\tiny*} = \arg \max_k w_k^T \phi(x_\text{\tiny*})
\]
Multiclass Margin

• For each class \(k \neq y \) define a linear constraint:

\[
w_y^T \phi(x) - w_k^T \phi(x) \geq 1 \quad \forall k \neq y
\]

• This guarantees a margin of at least 1
Multiclass Classification

- Optimization problem:

\[
\min_{\mathbf{W}} \frac{1}{2} \sum_k |\mathbf{w}_k|^2 \\
\text{s.t.} \quad \mathbf{w}_{y_n}^T \phi(x_n) - \mathbf{w}_k^T \phi(x_n) \geq 1 \quad \forall n, k \neq y_n
\]

- Equivalent to binary SVM when we have only two classes
Overlapping classes

• Add slack variables:

\[
\min_{\mathbf{w}, \xi} \ C \sum_n \xi_n + \frac{1}{2} \sum_k \|\mathbf{w}_k\|^2 \\
\text{s.t. } \mathbf{w}_{y_n}^T \phi(x_n) - \mathbf{w}_k^T \phi(x_n) \geq 1 - \xi_n \ \forall n, k \neq y_k
\]

• Equivalent to binary SVM when we have only two classes