
CS489/698
Lecture 9: Feb 1, 2017

Multi-layer Neural Networks, 
Error Backpropagation

[D] Chapt. 10, [HTF] Chapt. 11, [B] Sec. 
5.2, 5.3, [M] Sec. 16.5, [RN] Sec. 18.7

CS489/698 (c) 2017 P. Poupart 1



Quick Recap: Linear Models

Linear Regression                  Linear Classification

CS489/698 (c) 2017 P. Poupart 2



Quick Recap: Non-linear Models

Non-linear classification         Non-linear regression

CS489/698 (c) 2017 P. Poupart 3



Non-linear Models

• Convenient modeling assumption: linearity
• Extension: non-linearity can be obtained by mapping 

to a non-linear feature space 
• Limit: the basis functions are chosen a priori 

and are fixed

• Question: can we work with unrestricted non-linear 
models?

CS489/698 (c) 2017 P. Poupart 4



Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training 
data and retain only a subset of them (e.g., Support Vector 
Machines)

• Idea 2: Learn non-linear basis functions (e.g., Multi-layer 
Neural Networks)

CS489/698 (c) 2017 P. Poupart 5



Two-Layer Architecture

• Feed-forward neural network

• Hidden units: 

• Output units: 

• Overall: 

CS489/698 (c) 2017 P. Poupart 6



Common activation functions 

• Threshold: 

• Sigmoid: షೌ

• Gaussian: 
భ
మ
ೌషഋ


మ

• Tanh: 
ೌ షೌ

ೌ షೌ

• Identity: 

CS489/698 (c) 2017 P. Poupart 7



Adaptive non-linear basis functions

• Non-linear regression
– : non-linear function and : identity

• Non-linear classification
– : non-linear function and : sigmoid 

CS489/698 (c) 2017 P. Poupart 8



Weight training

• Parameters: 
• Objectives:

– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning

CS489/698 (c) 2017 P. Poupart 9



Least squared error

• Error function

• When 

then we are optimizing a linear combination of non-
linear basis functions

Linear combo Non-linear basis functions

CS489/698 (c) 2017 P. Poupart 10



Sequential Gradient Descent 

• For each example adjust the weights as 
follows:

• How can we compute the gradient efficiently given 
an arbitrary network structure?

• Answer: backpropagation algorithm

CS489/698 (c) 2017 P. Poupart 11



Backpropagation Algorithm

• Two phases:
– Forward phase: compute output of each unit 

– Backward phase: compute delta at each unit 

CS489/698 (c) 2017 P. Poupart 12



Forward phase

• Propagate inputs forward to compute the output of 
each unit

• Output at unit :

where    

CS489/698 (c) 2017 P. Poupart 13



Backward phase

• Use chain rule to recursively compute gradient

– For each weight : 

ೕ



ೕ

ೕ

ೕ

– Let 

ೕ
then

– Since then ೕ

ೕ

CS489/698 (c) 2017 P. Poupart 14



Simple Example

• Consider a network with two layers:

– Hidden nodes: 
ೌ షೌ

ೌ షೌ

• Tip: ᇱ ଶ

– Output node: 

• Objective: squared error

CS489/698 (c) 2017 P. Poupart 15



Simple Example

• Forward propagation: 
– Hidden units: 
– Output units: 

• Backward propagation:
– Output units: 
– Hidden units: 

• Gradients:
– Hidden layers: 

ೕ

– Output layer: 

ೖೕ

CS489/698 (c) 2017 P. Poupart 16



Non-linear regression examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

ଶ

௫

ିஶ

CS489/698 (c) 2017 P. Poupart 17



Analysis

• Efficiency: 
– Fast gradient computation: linear in number of weights

• Convergence: 
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting

– Solutions: early stopping, regularization (add 
penalty term to objective) 

CS489/698 (c) 2017 P. Poupart 18


