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Multi-layer Neural Networks, 
Error Backpropagation

[D] Chapt. 10, [HTF] Chapt. 11, [B] Sec. 
5.2, 5.3, [M] Sec. 16.5, [RN] Sec. 18.7
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Quick Recap: Linear Models

Linear Regression                  Linear Classification
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Quick Recap: Non-linear Models

Non-linear classification         Non-linear regression
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Non-linear Models

• Convenient modeling assumption: linearity
• Extension: non-linearity can be obtained by mapping 

to a non-linear feature space 
• Limit: the basis functions are chosen a priori 

and are fixed

• Question: can we work with unrestricted non-linear 
models?
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Flexible Non-Linear Models

• Idea 1: Select basis functions that correspond to the training 
data and retain only a subset of them (e.g., Support Vector 
Machines)

• Idea 2: Learn non-linear basis functions (e.g., Multi-layer 
Neural Networks)
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Two-Layer Architecture

• Feed-forward neural network

• Hidden units: 

• Output units: 

• Overall: 
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Common activation functions 

• Threshold: 

• Sigmoid: షೌ

• Gaussian: 
భ
మ
ೌషഋ


మ

• Tanh: 
ೌ షೌ

ೌ షೌ

• Identity: 
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Adaptive non-linear basis functions

• Non-linear regression
– : non-linear function and : identity

• Non-linear classification
– : non-linear function and : sigmoid 
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Weight training

• Parameters: 
• Objectives:

– Error minimization
• Backpropagation (aka “backprop”)

– Maximum likelihood
– Maximum a posteriori
– Bayesian learning

CS489/698 (c) 2017 P. Poupart 9



Least squared error

• Error function

• When 

then we are optimizing a linear combination of non-
linear basis functions

Linear combo Non-linear basis functions
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Sequential Gradient Descent 

• For each example adjust the weights as 
follows:

• How can we compute the gradient efficiently given 
an arbitrary network structure?

• Answer: backpropagation algorithm
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Backpropagation Algorithm

• Two phases:
– Forward phase: compute output of each unit 

– Backward phase: compute delta at each unit 
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Forward phase

• Propagate inputs forward to compute the output of 
each unit

• Output at unit :

where    
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Backward phase

• Use chain rule to recursively compute gradient

– For each weight : 

ೕ



ೕ

ೕ

ೕ

– Let 

ೕ
then

– Since then ೕ

ೕ
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Simple Example

• Consider a network with two layers:

– Hidden nodes: 
ೌ షೌ

ೌ షೌ

• Tip: ᇱ ଶ

– Output node: 

• Objective: squared error
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Simple Example

• Forward propagation: 
– Hidden units: 
– Output units: 

• Backward propagation:
– Output units: 
– Hidden units: 

• Gradients:
– Hidden layers: 

ೕ

– Output layer: 

ೖೕ
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Non-linear regression examples

• Two layer network:
– 3 tanh hidden units and 1 identity output unit

ଶ

௫

ିஶ
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Analysis

• Efficiency: 
– Fast gradient computation: linear in number of weights

• Convergence: 
– Slow convergence (linear rate)
– May get trapped in local optima

• Prone to overfitting

– Solutions: early stopping, regularization (add 
penalty term to objective) 
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