CS489/698

Lecture 5: Jan 18, 2017

Linear Regression by Maximum
Likelihood, Maximum A Posteriori and Bayesian Learning

[B] Sections 3.1 - 3.3, [M] Chapt. 7

Noisy Linear Regression

- Assume y is obtained from \boldsymbol{x} by a deterministic function f that has been perturbed (i.e., noisy measurement)
- Gaussian noise:

$$
y=f(\overline{\boldsymbol{x}})+\epsilon
$$

$$
\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}} \quad N\left(0, \sigma^{2}\right)
$$

$$
\begin{aligned}
\operatorname{Pr}(\boldsymbol{y} \mid \overline{\boldsymbol{X}}, \boldsymbol{w}, \sigma) & =N\left(\boldsymbol{y} \mid \boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{X}}, \sigma^{2}\right) \\
& =\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \bar{x}_{n}\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximum Likelihood

- Possible objective: find best \boldsymbol{w}^{*} by maximizing the likelihood of the data

$$
\begin{aligned}
& \boldsymbol{w}^{*}=\operatorname{argmax}_{\boldsymbol{w}} \operatorname{Pr}(\boldsymbol{y} \mid \overline{\boldsymbol{X}}, \boldsymbol{w}, \sigma) \\
&=\operatorname{argmax}_{\boldsymbol{w}} \prod_{n} e^{-\frac{\left(y_{n}-\boldsymbol{w}^{T} \bar{x}_{n}\right)^{2}}{2 \sigma^{2}}} \\
&=\operatorname{argmax}_{\boldsymbol{w}} \sum_{n}-\frac{\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \bar{x}_{n}\right)^{2}}{2 \sigma^{2}} \\
&=\operatorname{argmin}_{\boldsymbol{w}} \sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right)^{2}
\end{aligned}
$$

- We arrive at the original least square problem!

Maximum A Posteriori

- Alternative objective: find \boldsymbol{w}^{*} with highest posterior probability
- Consider Gaussian prior: $\operatorname{Pr}(\boldsymbol{w})=N(\mathbf{0}, \boldsymbol{\Sigma})$
- Posterior:

$$
\begin{aligned}
\operatorname{Pr}(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y}) & \propto \operatorname{Pr}(\boldsymbol{w}) \operatorname{Pr}(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{w}) \\
& =k e^{-\frac{\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{w}}{2}} e^{-\frac{\sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} x_{n}\right)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Maximum A Posteriori

- Optimization:

$$
\begin{aligned}
\boldsymbol{w}^{*} & =\operatorname{argmax}_{\boldsymbol{w}} \operatorname{Pr}(\boldsymbol{w} \mid \overline{\boldsymbol{X}}, \boldsymbol{y}) \\
& =\operatorname{argmax}_{\boldsymbol{w}}-\sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{n}\right)^{2}-\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{w} \\
& =\operatorname{argmin}_{\boldsymbol{w}} \sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{n}\right)^{2}+\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-\mathbf{1}} \boldsymbol{w}
\end{aligned}
$$

- Let $\boldsymbol{\Sigma}^{\mathbf{- 1}}=\lambda I$ then

$$
=\operatorname{argmin}_{\boldsymbol{w}} \sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{n}\right)^{2}+\lambda| | \boldsymbol{w} \|_{2}^{2}
$$

- We arrive at the original regularized least square problem!

Expected Squared Loss

- Even though we use a statistical framework, it is interesting to evaluate the expected squared loss

$$
\begin{aligned}
& E[L]=\int_{x, y} \operatorname{Pr}(\boldsymbol{x}, y)\left(y-\boldsymbol{w}^{T} \overline{\boldsymbol{x}}\right)^{2} d x d y \\
&=\int_{x, y} \operatorname{Pr}(\boldsymbol{x}, y)\left(y-f(\boldsymbol{x})+f(\boldsymbol{x})-\boldsymbol{w}^{T} \overline{\boldsymbol{x}}\right)^{2} d \boldsymbol{x} d y \\
&=\int_{x, y} \operatorname{Pr}(\boldsymbol{x}, y)[(y-f(x))^{2}+\underbrace{\left.2(y-f(x))\left(f(\boldsymbol{x})-\boldsymbol{w}^{T} \overline{\boldsymbol{x}}\right)+\left(f(x)-\boldsymbol{w}^{T} \overline{\boldsymbol{x}}\right)^{2}\right] d x d y}
\end{aligned}
$$

Expectation with respect to y is 0

$$
E[L]=\underbrace{\int_{x, y} \operatorname{Pr}(\boldsymbol{x}, y)(y-f(\boldsymbol{x}))^{2} d \boldsymbol{x} d y}_{\text {noise (constant) }}+\underbrace{\int_{\boldsymbol{x}} \operatorname{Pr}(\boldsymbol{x})\left(f(\boldsymbol{x})-\boldsymbol{w}^{T} \overline{\boldsymbol{x}}\right)^{2} d \boldsymbol{x}}_{\text {error (depends on } \boldsymbol{w} \text {) }}
$$

Expected Squared Loss

- Let's focus on the error part, which depends on \boldsymbol{w}

$$
E_{x}\left[\left(f(\boldsymbol{x})-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2}\right]=\int_{\boldsymbol{x}} \operatorname{Pr}(\boldsymbol{x})\left(f(\boldsymbol{x})-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2} d \boldsymbol{x}
$$

- But the choice of \boldsymbol{w} depends on the dataset S
- Instead consider expectation with respect to S

$$
E_{S}\left[\left(f(\boldsymbol{x})-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2}\right]
$$

where $\boldsymbol{w}_{\boldsymbol{S}}$ is the weight vector obtained based on S

Bias-Variance Decomposition

- Decompose squared loss

$$
\begin{aligned}
E_{S}[& \left.\left(f(\boldsymbol{x})-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2}\right] \\
= & E_{S}\left[f(\boldsymbol{x})-E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]+E_{S}\left[\boldsymbol{w}_{S}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]^{2} \\
& =E_{S}\left[\left(f(\boldsymbol{x})-E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]\right)^{2}\right. \\
& \quad+2\left(f(\boldsymbol{x})-E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]\right) \\
& \left.+\left(E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2}\right] \underbrace{\left(E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)}_{\text {Expectation is } 0} \\
= & \underbrace{\left(f(\boldsymbol{x})-E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]\right)^{2}}_{\text {bias }^{2}}+\underbrace{E_{S}\left[\left(E_{S}\left[\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right]-\boldsymbol{w}_{\boldsymbol{S}}^{\boldsymbol{T}} \overline{\boldsymbol{x}}\right)^{2}\right]}_{\text {csse9/688(c)2077 P.oupart }}
\end{aligned}
$$

Bias-Variance Decomposition

- Hence:

$$
E[\text { loss }]=(\text { bias })^{2}+\text { variance }+ \text { noise }
$$

- Picture:

Bias-Variance Decomposition

- Example

Bayesian Linear Regression

- We don't know if \boldsymbol{w}^{*} is the true underlying \boldsymbol{w}
- Instead of making predictions according to \boldsymbol{w}^{*}, compute the weighted average prediction according to $\operatorname{Pr}(\boldsymbol{w} \mid \overline{\boldsymbol{X}}, \boldsymbol{y})$

$$
\begin{aligned}
\operatorname{Pr}(\boldsymbol{w} \mid \overline{\boldsymbol{X}}, \boldsymbol{y}) & =k e^{-\frac{\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{w}}{2}} e^{-\frac{\sum_{n}\left(y_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\bar{x}}_{n}\right)^{2}}{2 \sigma^{2}}} \\
& =k e^{-\frac{1}{2}(\boldsymbol{w}-\overline{\boldsymbol{w}})^{T} \boldsymbol{A}(\boldsymbol{w}-\overline{\boldsymbol{w}})}=N\left(\overline{\boldsymbol{w}}, \boldsymbol{A}^{-\mathbf{1}}\right)
\end{aligned}
$$

where $\overline{\boldsymbol{w}}=\sigma^{-2} \boldsymbol{A}^{\mathbf{1}} \overline{\boldsymbol{X}}^{\boldsymbol{T}} \boldsymbol{y}$

$$
A=\sigma^{-2} \bar{X}^{T} \bar{X}+\Sigma^{-1}
$$

Bayesian Learning

Bayesian Learning

Bayesian Prediction

- Let x_{*} be the input for which we want a prediction and y_{*} be the corresponding prediction

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{*} \mid \overline{\boldsymbol{x}}_{*}, \overline{\boldsymbol{X}}, \boldsymbol{y}\right)=\int_{\boldsymbol{w}} \operatorname{Pr}\left(y_{*} \mid \overline{\boldsymbol{x}}_{*}, \boldsymbol{w}\right) \operatorname{Pr}(\boldsymbol{w} \mid \overline{\boldsymbol{X}}, y) d \boldsymbol{w} \\
& \quad=k \int_{\boldsymbol{w}} e^{-\frac{\left(y_{*}-\overline{\boldsymbol{x}}^{T} \boldsymbol{w}\right)^{2}}{2 \sigma^{2}}} e^{-\frac{1}{2}(\boldsymbol{w}-\overline{\boldsymbol{w}})^{T} \boldsymbol{A}(\boldsymbol{w}-\overline{\boldsymbol{w}})} d \boldsymbol{w} \\
& \quad=N\left(\overline{\boldsymbol{x}}_{*}^{T} \boldsymbol{A}^{-\mathbf{1}} \overline{\boldsymbol{X}}^{\boldsymbol{T}} \boldsymbol{y}, \overline{\boldsymbol{x}}_{*}^{\boldsymbol{T}} \boldsymbol{A}^{-\mathbf{1}} \overline{\boldsymbol{x}}_{*}\right)
\end{aligned}
$$

