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Linear Regression by Maximum 
Likelihood, Maximum A Posteriori and 

Bayesian Learning
[B] Sections 3.1 – 3.3, [M] Chapt. 7
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Noisy Linear Regression

• Assume is obtained from by a deterministic 
function that has been perturbed (i.e., noisy 
measurement)

• Gaussian noise:
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Maximum Likelihood

• Possible objective: find best by maximizing the 
likelihood of the data

• We arrive at the original least square problem!
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Maximum A Posteriori

• Alternative objective: find with highest 
posterior probability

• Consider Gaussian prior: 

• Posterior: 
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Maximum A Posteriori

• Optimization:

• Let then

• We arrive at the original regularized least square 
problem!
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Expected Squared Loss

• Even though we use a statistical framework, it is 
interesting to evaluate the expected squared loss

,

,

,

,

noise (constant) error (depends on )

Expectation with respect to is 0 
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Expected Squared Loss

• Let’s focus on the error part, which depends on 

• But the choice of depends on the dataset 
• Instead consider expectation with respect to 

where is the weight vector obtained based on 
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Bias-Variance Decomposition

• Decompose squared loss

Expectation is 0

bias2 variance
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Bias-Variance Decomposition

• Hence: 

• Picture:
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Bias-Variance Decomposition

• Example
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Bayesian Linear Regression

• We don’t know if is the true underlying 
• Instead of making predictions according to , 

compute the weighted average prediction according 
to 

∑

where 
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Bayesian Learning
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Bayesian Learning
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Bayesian Prediction

• Let be the input for which we want a prediction 
and be the corresponding prediction

∗ ∗
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