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Statistical Learning

* View: we have uncertain knowledge of the world

* |dea: learning simply reduces this uncertainty



Terminology

* Probability distribution:

— A specification of a probability for each event in
our sample space

— Probabilities must sum to 1

* Assume the world is described by two (or
more) random variables
— Joint probability distribution

 Specification of probabilities for all combinations of
events



Joint distribution

e Given two random variables 4 and B:

 Joint distribution:
Pr(A=aAB =b)foralla,b

* Marginalisation (sumout rule):
Pr(A=a) = X, Pr(A=aAB = D)
Pr(B=b) = X,Pr(A=aAB =))



Example: Joint Distribution

sunny ~sunny
cold ~cold cold ~cold
headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576
P(headacheAsunnyAcold) = P(~headachensunnyn~cold) =
P(headacheVsunny) =
wache) =

marginalization




Conditional Probability

* Pr(A|B): fraction of worlds in which B is true

that also have A true

H="Have headache"
F="Have Flu"

Pr(H) = 1/10
Pr(F) = 1/40
Pr(H|F) = 1/2

Headaches are rare and flu is
rarer, but if you have the flu,
then there is a 50-50 chance
you will have a headache
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Conditional Probability

Pr(H|F) = Fraction of flu inflicted
worlds in which you have a
headache

=(# worlds with flu and headache)/
(# worlds with flu)

= (Area of "H and F" region)/

H="Have headache" (Area of "F" region)
F="Have Flu"
= Pr(H A F)/ Pr(F)
Pr(H) = 1/10
Pr(F) = 1/40

Pr(H|F) = 1/2
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Conditional Probability

* Definition:
Pr(A|B) = Pr(AA B) /Pr(B)

 Chain rule:
Pr(AAB) = Pr(A|B) Pr(B)

Memorize these!

CS489/698 (c) 2017 P. Poupart



Inference

One day you wake up with a
headache. You think "Drat! 50%
of flues are associated with
headaches so I must have a 50-
50 chance of coming down with
the flu"

H="Have headache" :
Is your reasoning correct?

F="Have FIu"
Pr(H) = 1/10 Pr(FAH) =
Pr(F) = 1/40

Pr(H|F) = 1/2 Pr(F|H) =
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Example: Joint Distribution

sunny ~sunny
cold ~cold cold ~cold
headache |0.108 0.012 headache |0.072 0.008
~headache | 0.016 0.064 ~headache | 0.144 0.576

Pr(headache A cold | sunny) =

Pr(headache A cold | ~sunny) =



Bayes Rule

* Note
Pr(A|B)Pr(B) = Pr(AAB) = Pr(BAA) = Pr(B|A)Pr(A)

* Bayes Rule
Pr(B|A) = [(Pr(4|B)Pr(B)]/Pr(A)

Memorize this!



Using Bayes Rule for inference

* Often we want to form a hypothesis about the world
based on what we have observed

* Bayes rule is vitally important when viewed in terms
of stating the belief given to hypothesis H, given
evidence e

Prior probability

-~

Likelihood
Py = AP
/ ~

Posterior probability Normalizing constant
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Bayesian Learning

Prior: Pr(H)
Likelihood: Pr(e|H)
Evidence:e =< e e, ...,ey >

Bayesian Learning amounts to computing the
posterior using Bayes’ Theorem:

Pr(H|e) = k Pr(e|H)Pr(H)



Bayesian Prediction

Suppose we want to make a prediction about an
unknown quantity X

Pr(X|e) Y, Pr(X|e, h;)P(h;|e)
%, Pr(X|h)P(h;|e)

Predictions are weighted averages of the predictions
of the individual hypotheses

Hypotheses serve as “intermediaries” between raw
data and prediction



Candy Example

* Favorite candy sold in two flavors:
— Lime (hugh)
— Cherry (yum)

 Same wrapper for both flavors

* Sold in bags with different ratios:
— 100% cherry
— 75% cherry + 25% lime
— 50% cherry + 50% lime
— 25% cherry + 75% lime
— 100% lime



Candy Example

* You bought a bag of candy but don’t know its flavor
ratio

* After eating k candies:
— What’s the flavor ratio of the bag?
— What will be the flavor of the next candy?



Statistical Learning

* Hypothesis H: probabilistic theory of the world
— hy: 100% cherry
— h,: 75% cherry + 25% lime
— h4:50% cherry + 50% lime
— h,: 25% cherry + 75% lime
— he: 100% lime
 Examples E: evidence about the world
— e,: 15t candy is cherry
— e,: 2" candy is lime
— e5: 3™ candy is lime



Candy Example

* Assume prior Pr(H) =< 0.1,0.2,0.4,0.2,0.1 >

 Assume candies are i.i.d. (identically and
independently distributed)

Pr(e|h) = T1, P(e,|h)

e Suppose first 10 candies all taste lime:
Pr(e|lhs) =
Pr(e|lh;) =
Pr(elh,) =




P(h ile 1..e t)

Posterior

Posteriors given data generated from h_5
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19



Probability that next candy is lime

0.4

Prediction

Bayes predictions with data generated from h_5

4 6 8 10

Number of samples
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20



Bayesian Learning

e Bayesian learning properties:

— Optimal (i.e. given prior, no other prediction is correct
more often than the Bayesian one)

— No overfitting (all hypotheses considered and weighted)

 There is a price to pay:

— When hypothesis space is large Bayesian learning may be
intractable

— i.e. sum (or integral) over hypothesis often intractable
e Solution: approximate Bayesian learning



Maximum a posteriori (MAP)

* |dea: make prediction based on most probable
hypothesis h,,
Ryap = argmax; Pr(h,|e)
Pr(X|e) =~ Pr(X|hpyap)

* In contrast, Bayesian learning makes prediction
based on all hypotheses weighted by their
probability



MAP properties

MAP prediction less accurate than Bayesian
prediction since it relies only on one hypothesis h,,»

But MAP and Bayesian predictions converge as data
Increases

Controlled overfitting (prior can be used to penalize
complex hypotheses)

Finding h,,,, may be intractable:
— hyp = argmaxy Pr(h|e)
— Optimization may be difficult



Maximum Likelihood (ML)

* |dea: simplify MAP by assuming uniform prior
(i.e., Pr(h;) = Pr(h;) Vi, ))
hy.p = argmax, Pr(h) Pr(e|h)
h,, = argmax, Pr(e|h)

* Make prediction based on h,;,;; only:
Pr(X|e) =~ Pr(X|hp)



ML properties

ML prediction less accurate than Bayesian and MAP
predictions since it ignores prior info and relies only
on one hypothesis h,,,

But ML, MAP and Bayesian predictions converge as
data increases

Subject to overfitting (no prior to penalize complex
hypothesis that could exploit statistically insignificant
data patterns)

Finding h,,, is often easier than h,,,,
h,, = argmax, X logPr(e,|h)



