CS489/698 Lecture 4: Jan 16, 2017

Statistical Learning [RN]: Sec 20.1, 20.2, [M]: Sec. 2.2, 3.2

Statistical Learning

- View: we have uncertain knowledge of the world
- Idea: learning simply reduces this uncertainty

Terminology

• Probability distribution:

- A specification of a probability for each event in our sample space
- Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
 - Joint probability distribution
 - Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables A and B:
- Joint distribution:

 $Pr(A = a \land B = b)$ for all a, b

• Marginalisation (sumout rule):

 $Pr(A = a) = \Sigma_b Pr(A = a \Lambda B = b)$ $Pr(B = b) = \Sigma_a Pr(A = a \Lambda B = b)$

Example: Joint Distribution

sunny

~sunny

	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

 $P(headache \land sunny \land cold) = P(\land headache \land sunny \land \land cold) =$

P(headacheVsunny) =

CS489/698 (c) 2017 P. Poupart

Conditional Probability

 Pr(A|B): fraction of worlds in which B is true that also have A true

H="Have headache" F="Have Flu"

> Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2

Headaches are rare and flu is rarer, but if you have the flu, then there is a 50-50 chance you will have a headache

Conditional Probability

H="Have headache" F="Have Flu"

> Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2

Pr(H|F) = Fraction of flu inflicted worlds in which you have a headache

- =(# worlds with flu and headache)/
 (# worlds with flu)
- = (Area of "H and F" region)/ (Area of "F" region)

= $\Pr(H \wedge F) / \Pr(F)$

Conditional Probability

• Definition:

 $Pr(A|B) = Pr(A \Lambda B) / Pr(B)$

• Chain rule:

 $Pr(A \land B) = Pr(A|B) Pr(B)$

Memorize these!

Inference

One day you wake up with a headache. You think "Drat! 50% of flues are associated with headaches so I must have a 50-50 chance of coming down with the flu"

Is your reasoning correct?

H="Have headache" F="Have Flu"

Pr(H) = 1/10Pr(F) = 1/40Pr(H|F) = 1/2 $\Pr(F\Lambda H) =$ $\Pr(F|H) =$

Example: Joint Distribution

sunny

~sunny

	cold	~cold		cold	~cold
headache	0.108	0.012	headache	0.072	0.008
~headache	0.016	0.064	~headache	0.144	0.576

 $Pr(headache \land cold \mid sunny) =$

 $Pr(headache \land cold | \sim sunny) =$

Bayes Rule

• Note

 $Pr(A|B)Pr(B) = Pr(A\Lambda B) = Pr(B\Lambda A) = Pr(B|A)Pr(A)$

• Bayes Rule

Pr(B|A) = [(Pr(A|B)Pr(B)]/Pr(A)

Memorize this!

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H, given evidence e

CS489/698 (c) 2017 P. Poupart

Bayesian Learning

- **Prior:** Pr(H)
- Likelihood: Pr(e|H)
- Evidence: $e = \langle e_1, e_2, ..., e_N \rangle$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:
 Pr(H|e) = k Pr(e|H)Pr(H)

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X
- $\Pr(X|\boldsymbol{e}) = \Sigma_i \Pr(X|\boldsymbol{e}, h_i) P(h_i|\boldsymbol{e})$ = $\Sigma_i \Pr(X|h_i) P(h_i|\boldsymbol{e})$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

Candy Example

- You bought a bag of candy but don't know its flavor ratio
- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h_1 : 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h_4 : 25% cherry + 75% lime
 - *h*₅: 100% lime

• Examples E: evidence about the world

- $-e_1$: 1st candy is cherry
- $-e_2$: 2nd candy is lime
- $-e_3$: 3rd candy is lime
- ...

Candy Example

- Assume prior Pr(H) = < 0.1, 0.2, 0.4, 0.2, 0.1 >
- Assume candies are i.i.d. (identically and independently distributed)

 $\Pr(\boldsymbol{e}|h) = \prod_n P(\boldsymbol{e}_n|h)$

• Suppose first 10 candies all taste lime:

 $Pr(\boldsymbol{e}|h_5) =$ $Pr(\boldsymbol{e}|h_3) =$ $Pr(\boldsymbol{e}|h_1) =$

Posterior

Posteriors given data generated from h_5

CS489/698 (c) 2017 P. Poupart

Prediction

CS489/698 (c) 2017 P. Poupart

Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (all hypotheses considered and weighted)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

• Idea: make prediction based on most probable hypothesis h_{MAP} $h_{MAP} = argmax_{h_i} \Pr(h_i | e)$

 $\Pr(X|\boldsymbol{e}) \approx \Pr(X|h_{MAP})$

 In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- **Controlled overfitting** (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - $-h_{MAP} = argmax_h \Pr(h|\boldsymbol{e})$
 - Optimization may be difficult

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $Pr(h_i) = Pr(h_j) \forall i, j$) $h_{MAP} = argmax_h Pr(h) Pr(e|h)$ $h_{ML} = argmax_h Pr(e|h)$
- Make prediction based on h_{ML} only: $Pr(X|e) \approx Pr(X|h_{ML})$

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on **one** hypothesis $h_{\rm ML}$
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP} $h_{ML} = argmax_h \Sigma_n \log \Pr(e_n|h)$