CS489/698 Lecture 4: Jan 16, 2017

Statistical Learning
[RN]: Sec 20.1, 20.2, [M]: Sec. 2.2, 3.2

Statistical Learning

- View: we have uncertain knowledge of the world
- Idea: learning simply reduces this uncertainty

Terminology

- Probability distribution:
- A specification of a probability for each event in our sample space
- Probabilities must sum to 1
- Assume the world is described by two (or more) random variables
- Joint probability distribution
- Specification of probabilities for all combinations of events

Joint distribution

- Given two random variables A and B :
- Joint distribution:

$$
\operatorname{Pr}(A=a \Lambda B=b) \text { for all } a, b
$$

- Marginalisation (sumout rule):

$$
\begin{aligned}
& \operatorname{Pr}(A=a)=\Sigma_{b} \operatorname{Pr}(A=a \Lambda B=b) \\
& \operatorname{Pr}(B=b)=\Sigma_{a} \operatorname{Pr}(A=a \Lambda B=b)
\end{aligned}
$$

Example: Joint Distribution

	sunny	cold	\sim cold		cold
\sim cold headache 0.108 0.012 headache 0.072 neadache 0.016 0.064 \sim headache 0.144	0.576				

$P($ headache^sunny^cold $)=$
$P(\sim$ headache^sunny $\wedge \sim$ cold $)=$
$P($ headacheVsunny $)=$

$$
P(\text { headache })=
$$

marginalization

Conditional Probability

- $\operatorname{Pr}(A \mid B)$: fraction of worlds in which B is true that also have A true
$H=" H a v e ~ h e a d a c h e " ~$
F="Have Flu"

$$
\begin{gathered}
\operatorname{Pr}(H)=1 / 10 \\
\operatorname{Pr}(F)=1 / 40 \\
\operatorname{Pr}(H \mid F)=1 / 2
\end{gathered}
$$

Headaches are rare and flu is rarer, but if you have the flu, then there is a $50-50$ chance you will have a headache

Conditional Probability

$\operatorname{Pr}(H \mid F)=$ Fraction of flu inflicted worlds in which you have a headache
=(\# worlds with flu and headache)/ (\# worlds with flu)
= (Area of "H and F" region)/ (Area of "F" region)
H="Have headache" $\mathrm{F}=$ "Have Flu"

$$
=\operatorname{Pr}(H \Lambda F) / \operatorname{Pr}(F)
$$

$$
\begin{gathered}
\operatorname{Pr}(H)=1 / 10 \\
\operatorname{Pr}(F)=1 / 40 \\
\operatorname{Pr}(H \mid F)=1 / 2
\end{gathered}
$$

Conditional Probability

- Definition:

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \Lambda B) / \operatorname{Pr}(B)
$$

- Chain rule:

$$
\operatorname{Pr}(A \Lambda B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)
$$

Memorize these!

Inference

One day you wake up with a headache. You think "Drat! 50\% of flues are associated with headaches so I must have a 5050 chance of coming down with the flu"

H="Have headache" F="Have Flu"

$$
\begin{aligned}
& \operatorname{Pr}(H)=1 / 10 \\
& \operatorname{Pr}(F)=1 / 40 \\
& \operatorname{Pr}(H \mid F)=1 / 2
\end{aligned}
$$

Is your reasoning correct?
$\operatorname{Pr}(F \Lambda H)=$
$\operatorname{Pr}(F \mid H)=$

Example: Joint Distribution

| sunny | | | | \sim sunny |
| :--- | :--- | :--- | :--- | :--- | :--- |
| cold \sim cold cold
 \sim cold
 headache 0.108 0.012 headache 0.072
 0.008
 headache 0.016 0.064 \sim headache 0.144 | | | | |

$\operatorname{Pr}($ headache Λ cold \mid sunny $)=$
$\operatorname{Pr}($ headache Λ cold $\mid \sim$ sunny $)=$

Bayes Rule

- Note

$$
\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)=\operatorname{Pr}(A \Lambda B)=\operatorname{Pr}(B \Lambda A)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)
$$

- Bayes Rule

$$
\operatorname{Pr}(B \mid A)=[(\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)] / \operatorname{Pr}(A)
$$

Memorize this!

Using Bayes Rule for inference

- Often we want to form a hypothesis about the world based on what we have observed
- Bayes rule is vitally important when viewed in terms of stating the belief given to hypothesis H , given evidence e
Prior probability

Posterior probability
Normalizing constant

Bayesian Learning

- Prior: $\operatorname{Pr}(H)$
- Likelihood: $\operatorname{Pr}(e \mid H)$
- Evidence: $\boldsymbol{e}=<e_{1}, e_{2}, \ldots, e_{N}>$
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem:

$$
\operatorname{Pr}(H \mid \boldsymbol{e})=k \operatorname{Pr}(\boldsymbol{e} \mid H) \operatorname{Pr}(H)
$$

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X
- $\operatorname{Pr}(X \mid \boldsymbol{e})=\Sigma_{i} \operatorname{Pr}\left(X \mid \boldsymbol{e}, h_{i}\right) P\left(h_{i} \mid \boldsymbol{e}\right)$

$$
=\Sigma_{i} \operatorname{Pr}\left(X \mid h_{i}\right) P\left(h_{i} \mid \boldsymbol{e}\right)
$$

- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Favorite candy sold in two flavors:
- Lime (hugh)
- Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
- 100\% cherry
- 75\% cherry + 25% lime
- 50\% cherry + 50\% lime
- 25% cherry $+75 \%$ lime
- 100\% lime

Candy Example

- You bought a bag of candy but don’t know its flavor ratio
- After eating k candies:
- What's the flavor ratio of the bag?
- What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
- h_{1} : 100\% cherry
$-h_{2}: 75 \%$ cherry $+25 \%$ lime
$-h_{3}: 50 \%$ cherry $+50 \%$ lime
- $h_{4}: 25 \%$ cherry $+75 \%$ lime
$-h_{5}$: 100% lime
- Examples E: evidence about the world
$-e_{1}: 1^{\text {st }}$ candy is cherry
$-e_{2}: 2^{\text {nd }}$ candy is lime
$-e_{3}: 3^{\text {rd }}$ candy is lime
- ...

Candy Example

- Assume prior $\operatorname{Pr}(H)=<0.1,0.2,0.4,0.2,0.1>$
- Assume candies are i.i.d. (identically and independently distributed)

$$
\operatorname{Pr}(\boldsymbol{e} \mid h)=\Pi_{n} P\left(e_{n} \mid h\right)
$$

- Suppose first 10 candies all taste lime:

$$
\begin{aligned}
& \operatorname{Pr}\left(\boldsymbol{e} \mid h_{5}\right)= \\
& \operatorname{Pr}\left(\boldsymbol{e} \mid h_{3}\right)= \\
& \operatorname{Pr}\left(\boldsymbol{e} \mid h_{1}\right)=
\end{aligned}
$$

Posterior

Prediction

Bayes predictions with data generated from $\mathrm{h} \mathbf{5}$

Bayesian Learning

- Bayesian learning properties:
- Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
- No overfitting (all hypotheses considered and weighted)
- There is a price to pay:
- When hypothesis space is large Bayesian learning may be intractable
- i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

- Idea: make prediction based on most probable hypothesis $h_{\text {MAP }}$

$$
\begin{aligned}
& h_{M A P}=\operatorname{argmax}_{h_{i}} \operatorname{Pr}\left(h_{i} \mid \boldsymbol{e}\right) \\
& \operatorname{Pr}(X \mid \boldsymbol{e}) \approx \operatorname{Pr}\left(X \mid h_{M A P}\right)
\end{aligned}
$$

- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis $h_{\text {MAP }}$
- But MAP and Bayesian predictions converge as data increases
- Controlled overfitting (prior can be used to penalize complex hypotheses)
- Finding $h_{M A P}$ may be intractable:
$-h_{M A P}=\operatorname{argmax}_{h} \operatorname{Pr}(h \mid \boldsymbol{e})$
- Optimization may be difficult

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., $\operatorname{Pr}\left(h_{i}\right)=\operatorname{Pr}\left(h_{j}\right) \forall i, j$)
$h_{M A P}=\operatorname{argmax}_{h} \operatorname{Pr}(h) \operatorname{Pr}(\boldsymbol{e} \mid h)$
$h_{M L}=\operatorname{argmax}_{h} \operatorname{Pr}(\boldsymbol{e} \mid h)$
- Make prediction based on $h_{M L}$ only:

$$
\operatorname{Pr}(X \mid \boldsymbol{e}) \approx \operatorname{Pr}\left(X \mid h_{M L}\right)
$$

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis $h_{M L}$
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding $h_{M L}$ is often easier than $h_{M A P}$

$$
h_{M L}=\operatorname{argmax}_{h} \Sigma_{n} \log \operatorname{Pr}\left(e_{n} \mid h\right)
$$

