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Statistical Learning

• View: we have uncertain knowledge of the world

• Idea: learning simply reduces this uncertainty
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Terminology

• Probability distribution:
– A specification of a probability for each event in 

our sample space
– Probabilities must sum to 1

• Assume the world is described by two (or 
more) random variables
– Joint probability distribution 

• Specification of probabilities for all combinations of 
events
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Joint distribution 

• Given two random variables and :
• Joint distribution: 

for all 

• Marginalisation (sumout rule):
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Example: Joint Distribution

cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny

P(headacheΛsunnyΛcold) =  P(~headacheΛsunnyΛ~cold) = 

P(headacheVsunny) =

P(headache) =

marginalization
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Conditional Probability

• : fraction of worlds in which is true 
that also have true

H

F

H=“Have headache”
F=“Have Flu”

Headaches are rare and flu is 
rarer, but if you have the flu, 
then there is a 50-50 chance 
you will have a headache
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Conditional Probability

H

F

H=“Have headache”
F=“Have Flu”

Fraction of flu inflicted 
worlds in which you have a 
headache

=(# worlds with flu and headache)/ 
(# worlds with flu)

= (Area of “H and F” region)/
(Area of “F” region)

= 
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Conditional Probability

• Definition:

• Chain rule:

Memorize these!
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Inference

H

F

H=“Have headache”
F=“Have Flu”

One day you wake up with a 
headache.  You think “Drat! 50% 
of flues are associated with 
headaches so I must have a 50-
50 chance of coming down with 
the flu”

Is your reasoning correct?
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Example: Joint Distribution

cold ~cold

headache 0.108 0.012

~headache 0.016 0.064

cold ~cold

headache 0.072 0.008

~headache 0.144 0.576

sunny ~sunny
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Bayes Rule

• Note

• Bayes Rule

Memorize this!
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Using Bayes Rule for inference
• Often we want to form a hypothesis about the world 

based on what we have observed
• Bayes rule is vitally important when viewed in terms 

of stating the belief given to hypothesis H, given 
evidence e

Posterior probability

Prior probability
Likelihood

Normalizing constant
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Bayesian Learning

• Prior:
• Likelihood:
• Evidence:

• Bayesian Learning amounts to computing the 
posterior using Bayes’ Theorem:
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Bayesian Prediction

• Suppose we want to make a prediction about an 
unknown quantity X

•

• Predictions are weighted averages of the predictions 
of the individual hypotheses

• Hypotheses serve as “intermediaries” between raw 
data and prediction
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Candy Example

• Favorite candy sold in two flavors:
– Lime (hugh)
– Cherry (yum)

• Same wrapper for both flavors
• Sold in bags with different ratios:

– 100% cherry
– 75% cherry + 25% lime
– 50% cherry + 50% lime
– 25% cherry + 75% lime
– 100% lime
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Candy Example

• You bought a bag of candy but don’t know its flavor 
ratio

• After eating candies:
– What’s the flavor ratio of the bag?
– What will be the flavor of the next candy?
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Statistical Learning

• Hypothesis H: probabilistic theory of the world
– 1: 100% cherry
– 2: 75% cherry + 25% lime
– 3: 50% cherry + 50% lime
– 4: 25% cherry + 75% lime
– 5: 100% lime

• Examples E: evidence about the world
– 1: 1st candy is cherry
– 2: 2nd candy is lime
– 3: 3rd candy is lime
– …
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Candy Example

• Assume prior 
• Assume candies are i.i.d. (identically and 

independently distributed)


• Suppose first 10 candies all taste lime:
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Posterior
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Bayesian Learning

• Bayesian learning properties:
– Optimal (i.e. given prior, no other prediction is correct 

more often than the Bayesian one)
– No overfitting (all hypotheses considered and weighted)

• There is a price to pay:
– When hypothesis space is large Bayesian learning may be 

intractable
– i.e. sum (or integral) over hypothesis often intractable

• Solution: approximate Bayesian learning
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Maximum a posteriori (MAP)

• Idea: make prediction based on most probable 
hypothesis

ℎ



• In contrast, Bayesian learning makes prediction 
based on all hypotheses weighted by their 
probability
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MAP properties

• MAP prediction less accurate than Bayesian 
prediction since it relies only on one hypothesis 

• But MAP and Bayesian predictions converge as data 
increases

• Controlled overfitting (prior can be used to penalize 
complex hypotheses)

• Finding may be intractable:
–
– Optimization may be difficult
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Maximum Likelihood (ML)

• Idea: simplify MAP by assuming uniform prior 
(i.e.,  )

• Make prediction based on only:
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ML properties

• ML prediction less accurate than Bayesian and MAP 
predictions since it ignores prior info and relies only 
on one hypothesis 

• But ML, MAP and Bayesian predictions converge as 
data increases

• Subject to overfitting (no prior to penalize complex 
hypothesis that could exploit statistically insignificant 
data patterns)

• Finding is often easier than 
ℎ


