CS489/698 Machine Learning Lecture 3: Jan 11, 2017

Linear Regression
[RN] Sec. 18.6.1, [HTF] Sec. 2.3.1,
[D] Sec. 7.6, [B] Sec. 3.1, [M] Sec. 1.4.5

Linear model for regression

- Simple form of regression
- Picture:

Problem

- Data: $\left\{\left(\boldsymbol{x}_{1}, t_{1}\right),\left(\boldsymbol{x}_{2}, t_{2}\right), \ldots,\left(\boldsymbol{x}_{\boldsymbol{N}}, t_{N}\right)\right\}$
$-\boldsymbol{x}=<x_{1}, x_{2}, \ldots, x_{D}>$: input vector
$-t$: target (continuous value)
- Problem: find hypothesis h that maps \boldsymbol{x} to t
- Assume that h is linear:

$$
y(\boldsymbol{x}, \boldsymbol{w})=w_{0}+w_{1} x_{1}+\cdots+w_{D} x_{D}=\boldsymbol{w}^{\boldsymbol{T}}\binom{1}{\boldsymbol{x}}
$$

- Objective: minimize some loss function
- Euclidean loss: $L_{2}(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left(y\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{w}\right)-t_{n}\right)^{2}$

Optimization

- Find best w that minimizes Euclidean loss

$$
\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(t_{n}-\boldsymbol{w}^{\boldsymbol{T}}\binom{1}{\boldsymbol{x}_{\boldsymbol{n}}}\right)^{2}
$$

- Convex optimization problem
\Rightarrow unique optimum (global)

Solution

- Let $\overline{\boldsymbol{x}}=\binom{1}{\boldsymbol{x}}$ then $\min _{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(t_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right)^{2}$
- Find \boldsymbol{w}^{*} by setting the derivative to 0

$$
\begin{aligned}
& \frac{\partial L_{2}}{\partial_{w_{j}}}=\sum_{n=1}^{N}\left(t_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right) \bar{x}_{n j}=0 \quad \forall j \\
& \quad \Rightarrow \sum_{n=1}^{N}\left(t_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right) \overline{\boldsymbol{x}}_{\boldsymbol{n}}=0
\end{aligned}
$$

- This is a linear system in \boldsymbol{w}, therefore we rewrite it as $\boldsymbol{A} \boldsymbol{w}=\boldsymbol{b}$
where $\boldsymbol{A}=\sum_{n=1}^{N} \overline{\boldsymbol{x}}_{\boldsymbol{n}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}^{\boldsymbol{T}}$ and $\boldsymbol{b}=\sum_{n=1}^{N} t_{n} \overline{\boldsymbol{x}}_{\boldsymbol{n}}$

Solution

- If training instances span \Re^{D+1} then \boldsymbol{A} is invertible:

$$
w=A^{-1} b
$$

- In practice it is faster to solve the linear system $\boldsymbol{A w}=\boldsymbol{b}$ directly instead of inverting \boldsymbol{A}
- Gaussian elimination
- Conjugate gradient
- Iterative methods

Picture

Regularization

- Least square solution may not be stable
- i.e., slight perturbation of the input may cause a dramatic change in the output
- Form of overfitting

Example 1

- Training data: $\overline{\boldsymbol{x}}_{\mathbf{1}}=\binom{1}{0} \quad \overline{\boldsymbol{x}}_{\mathbf{2}}=\binom{1}{\epsilon}$

$$
t_{1}=1 \quad t_{2}=1
$$

- $\boldsymbol{A}=$
- $A^{-1}=$
$\boldsymbol{b}=$
- $\boldsymbol{w}=$

Example 2

- Training data: $\bar{x}_{1}=\binom{1}{0} \quad \bar{x}_{2}=\binom{1}{\epsilon}$

$$
t_{1}=1+\epsilon t_{2}=1
$$

- $\boldsymbol{A}=$
- $A^{-1}=$
$b=$
- $\boldsymbol{w}=$

Picture

Regularization

- Idea: favor smaller values
- Tikhonov regularization: add $\left|\mid \boldsymbol{w} \|_{2}^{2}\right.$ as a penalty term
- Ridge regression:

$$
\boldsymbol{w}^{*}=\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N}\left(t_{n}-\boldsymbol{w}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{\boldsymbol{n}}\right)^{2}+\frac{\lambda}{2}| | \boldsymbol{w} \|_{2}^{2}
$$

where λ is a weight to adjust the importance of the penalty

Regularization

- Solution: $(\boldsymbol{\lambda} \boldsymbol{I}+\boldsymbol{A}) \boldsymbol{w}=\boldsymbol{b}$
- Notes
- Without regularization: eigenvalues of linear system may be arbitrarily close to 0 and the inverse may have arbitrarily large eigenvalues.
- With Tikhonov regularization, eigenvalues of linear system are $\geq \lambda$ and therefore bounded away from 0 . Similarly, eigenvalues of inverse are bounded above by $1 / \lambda$.

Regularized Examples

Example 1

Example 2

