CS489/698 Lecture 22: March 27, 2017

Bagging and Distributed Computing [RN] Sec. 18.10, [M] Sec. 16.2.5, [B] Chap. 14, [HTF] Chap 15-16, [D] Chap. 11

Boosting vs Bagging

• Review

Independent classifiers/predictors

- How can we obtain independent classifiers/predictors for bagging?
- Bootstrap sampling
 - Sample (without replacement) subset of data
- Random projection
 - Sample (without replacement) subset of features
- Learn different classifiers/predictors based on each data subset and feature subset

Bagging

For k = 1 to K

 $D_k \leftarrow \text{sample data subset}$

 $F_k \leftarrow$ sample feature subset

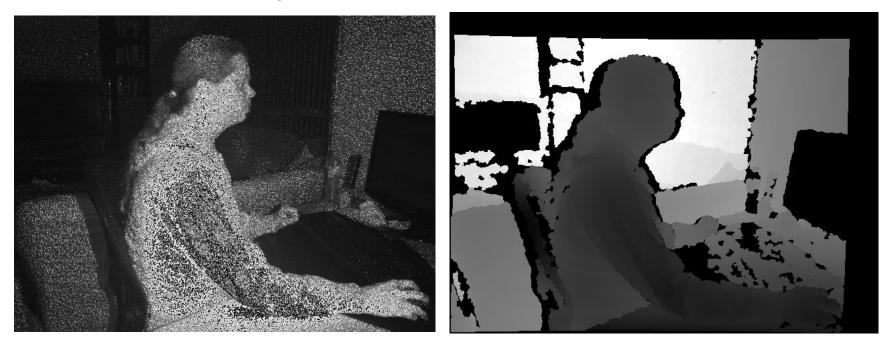
 $h_k \leftarrow \text{train classifier/predictor based on } \boldsymbol{D}_k \text{ and } \boldsymbol{F}_k$

Classification: $majority(h_1(\mathbf{x}), ..., h_K(\mathbf{x}))$ Regression: $average(h_1(\mathbf{x}), ..., h_K(\mathbf{x}))$

Random forest: bag of decision trees

Application: Xbox 360 Kinect

- Microsoft Cambridge
- Body part recognition: supervised learning


Depth camera

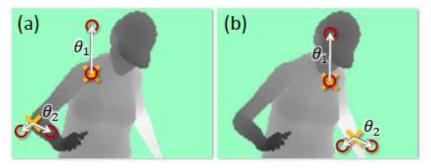
• Kinect

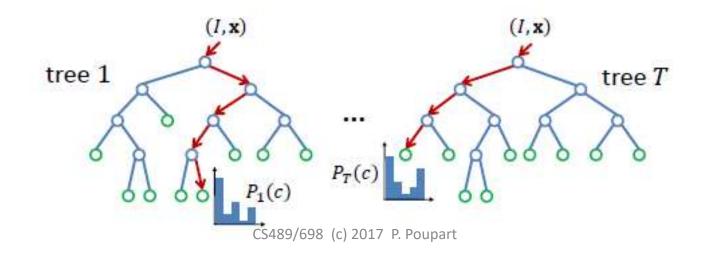
Infrared image


Gray scale depth map

CS489/698 (c) 2017 P. Poupart

Kinect Body Part Recognition


• Problem: label each pixel with a body part


CS489/698 (c) 2017 P. Poupart

Kinect Body Part Recognition

• Features: depth differences between pairs of pixels

• Classification: forest of decision trees

Large Scale Machine Learning

- Big data
 - Large number of data instances
 - Large number of features
- Solution: distribute computation (parallel computation)
 - GPU (Graphics Processing Unit)
 - Many cores

GPU computation

- Many Machine Learning algorithms consist of vector, matrix and tensor operations
 - A tensor is a multidimensional array
- GPU (Graphics Processing Units) can perform arithmetic operations on all elements of a tensor in parallel
- Packages that facilitate ML programming on GPUs: TensorFlow, Theano, Torch, Caffe, DL4J

Multicore Computation

- Idea: Train a different classifier/predictor with a subset of the data on each core
- How can we combine the classifiers/predictors?
- Should we take the average of the parameters of the classifiers/predictors?

No, this might lead to a worse classifier/predictor. This is especially problematic for models with hidden variables/units such as neural networks and hidden Markov models

Bad case of parameter averaging

• Consider two threshold neural networks that encode the exclusive-or Boolean function

• Averaging the weights yields a new neural network that does not encode exclusive-or

Safely Combining Predictions

- A safe approach to ensemble learning is to combine the predictions (not the parameters)
- **Classification:** majority vote of the classes predicted by the classifiers
- Regression: average of the predictions computed by the regressors