CS489/698 Lecture 20: March 20, 2017

Generative networks [GBC] Chap. 20

Generative networks

- Neural networks are typically used for classification or regression
 - Input: data
 - Output: class or prediction
- Can we design neural networks that can generate data?
 - Input: random vector
 - Output: data

Generative networks

- Several types of generative networks
 - Boltzmann machines
 - Sigmoid belief networks
 - Variational autoencoders
 - Generative adversarial networks
 - Generative moment matching networks
 - Sum-product networks

Recall Probabilistic Autoencoder

- Let f and g represent conditional distributions $f: \Pr(h|x; W_f)$ and $g: \Pr(x|h; W_g)$
- The decoder g can be treated as a generative model
 - 1. Sample h from Pr(h)
 - 2. Sample **x** from $Pr(x|h; W_g)$
- Question: how do we choose Pr(h)?
 NB: We cannot use Pr(h|x; W_f) since it is conditioned on x, which we are trying to generate.

Variational Autoencoders

- Idea: train encoder Pr(*h*|*x*; *W_f*) to approach a simple and fixed distribution, e.g., *N*(*h*; 0, *I*)
- This way we can set Pr(h) to N(h; 0, I)
- Objective:

$$\max_{\boldsymbol{W}} \sum_{n} \Pr(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}, \boldsymbol{W}_{g}) - c KL(\Pr(\boldsymbol{h} | \boldsymbol{x}_{n}; \boldsymbol{W}_{f}) | | N(\boldsymbol{h}; \boldsymbol{0}, \boldsymbol{I}))$$

Kullback-Leibler divergence Distance measure for distributions

Variational Autoencoder Likelihood

• How do we compute $Pr(x_n; W_f, W_g)$?

$$\Pr(\boldsymbol{x}_n; \boldsymbol{W}_f, \boldsymbol{W}_g) = \int_{\boldsymbol{h}} \Pr(\boldsymbol{x}_n | \boldsymbol{h}; \boldsymbol{W}_g) \Pr(\boldsymbol{h} | \boldsymbol{x}_n; \boldsymbol{W}_f) d\boldsymbol{h}$$

 Since Pr(h|x_n; W_f) should approach N(h; 0, I), then force Pr(h|x_n; W_f) to be Gaussian

$$\Pr(\boldsymbol{h}|\boldsymbol{x}_n; \boldsymbol{W}_f) = N(\boldsymbol{h}; \mu_n(\boldsymbol{x}_n; \boldsymbol{W}_f), \sigma_n(\boldsymbol{x}_n; \boldsymbol{W}_f)\boldsymbol{I})$$

where the mean μ_n and variance σ_n are obtained by a neural net in x_n parametrized by W_f

Variational Autoencoder Likelihood

• Approximate the integral over $m{h}$

$$\Pr(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}, \boldsymbol{W}_{g}) = \int_{\boldsymbol{h}} \Pr(\boldsymbol{x}_{n} | \boldsymbol{h}; \boldsymbol{W}_{g}) N(\boldsymbol{h}; \mu_{n}(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}), \sigma_{n}(\boldsymbol{x}_{n}; \boldsymbol{W}_{f}) \boldsymbol{I}) d\boldsymbol{h}$$

• by a single sample

$$\Pr(\boldsymbol{x}_n; \boldsymbol{W}_f, \boldsymbol{W}_g) \approx \Pr(\boldsymbol{x}_n | \boldsymbol{h}_n; \boldsymbol{W}_g)$$

where $\boldsymbol{h}_n \sim N(\boldsymbol{h}; \mu_n(\boldsymbol{x}_n; \boldsymbol{W}_f), \sigma_n(\boldsymbol{x}_n; \boldsymbol{W}_f) \boldsymbol{I})$

Variational Autoencoder Training

- Training by backpropagation
- Picture

Variational Autoencoder Testing

- Testing corresponds to generating a data point
- Picture

Images generated with VAEs

Generative Adversarial Networks

- Approach based on game theory
- Two networks:
 - 1. Generator $g(\mathbf{z}; \mathbf{W}_g) \rightarrow \mathbf{x}$
 - 2. Discriminator $d(\mathbf{x}; \mathbf{W}_d) \rightarrow \Pr(\mathbf{x} \text{ is real})$
- Objective

 $\min_{\boldsymbol{W}_g} \max_{\boldsymbol{W}_d} \sum_n \log \Pr(\boldsymbol{x}_n \text{ is real}; \boldsymbol{W}_d) + \log \Pr(g(\boldsymbol{z}_n; \boldsymbol{W}_g) \text{ is fake}; \boldsymbol{W}_d)$ $\equiv \min_{\boldsymbol{W}_g} \max_{\boldsymbol{W}_d} \sum_n \log d(\boldsymbol{x}_n; \boldsymbol{W}_d) + \log \left(1 - d\left(g(\boldsymbol{z}_n; \boldsymbol{W}_g); \boldsymbol{W}_d\right)\right)$

Generative Adversarial Networks

• Picture

GAN training

- Repeat until convergence
 - For k steps do
 - Sample z_1, \dots, z_m from $\Pr(z)$
 - Sample x_1, \ldots, x_m from training set
 - Update discriminator by ascending its stochastic gradient $\nabla_{W_d} \left(\frac{1}{m} \sum_{n=1}^m \left[\log d(\mathbf{x}_n; W_d) + \log \left(1 d \left(g(\mathbf{z}_n; W_g); W_d \right) \right) \right] \right)$
 - Sample $\boldsymbol{z}_1, \dots, \boldsymbol{z}_m$ from $\Pr(\boldsymbol{z})$
 - Update generator by descending its stochastic gradient

$$\nabla_{\boldsymbol{W}_g}\left(\frac{1}{m}\sum_{n=1}^m \log\left(1-d(g(\boldsymbol{z}_n;\boldsymbol{W}_g);\boldsymbol{W}_d)\right)\right)$$

GAN training

• In the limit (with sufficiently expressive networks, sufficient data and global convergence)

-
$$\Pr(\mathbf{x}|\mathbf{z}; \mathbf{W}_g) \rightarrow true \ data \ distribution$$

- $Pr(x \text{ is real}; W_d) \rightarrow 0.5$ (for real and fake data)
- Problems in practice:
 - Imbalance: one network may dominate the other
 - Local convergence

Images generated with GANs

• Right columns are nearest neighbour training examples of adjacent columns