CS489/698
Lecture 20: March 20, 2017

Generative networks
[GBC] Chap. 20

Generative networks

* Neural networks are typically used for classification
or regression
— Input: data
— Output: class or prediction

 Can we design neural networks that can generate
data?
— Input: random vector
— QOutput: data

Generative networks

* Several types of generative networks
— Boltzmann machines
— Sigmoid belief networks
— Variational autoencoders
— Generative adversarial networks
— Generative moment matching networks

— Sum-product networks

Recall Probabilistic Autoencoder

* Let f and g represent conditional distributions
f:Pr(hlx;W;) and g:Pr(x|h;W,)

* The decoder g can be treated as a generative model
1. Sample h from Pr(h)

2. Sample x from Pr(x|h; Wg)

* Question: how do we choose Pr(h)?
NB: We cannot use Pr(h|x; W) since it is
conditioned on x, which we are trying to generate.

Variational Autoencoders

* Idea: train encoder Pr(h|x; W) to approach a
simple and fixed distribution, e g., N(h;0,I)

 This way we can set Pr(h) to N(h; 0, 1)

* Objective:
muz/lxz Pr(x,; We,W,) — c KL(Pr(h|x,; W) |IN(h; 0,1))
\)
!

Kullback-Leibler divergence
Distance measure for distributions

Variational Autoencoder Likelihood
e How do we compute Pr(xn; We, Wg)?
Pr(x,; W, W,) = f Pr(x,|h; W,)Pr(h|x,; W() dh
h

* Since Pr(h|x,; W) should approach N(h; 0, 1),
then force Pr(h|x,; W) to be Gaussian

Pr(h|x,; W;) = N(R; iy (X; We), 05 (X; WT)

where the mean u,, and variance g,, are obtained by
a neural net in x;, parametrized by W¢

Variational Autoencoder Likelihood

* Approximate the integral over h
Pr(x,; W, W,)
= fPr(xn‘h; Wg)N(h; Un (Xn; W), 0 (xn; We)I) dh
h
* by asingle sample
Pr(x,; We, W,) = Pr(x,|hy; W,)

where hy, ~ N(h; p (X5, Wp), 0 (x; We)I)

Variational Autoencoder Training

* Training by backpropagation
* Picture

Variational Autoencoder Testing

* Testing corresponds to generating a data point
* Picture

Images generated with VAEs

&
£
e
EE

QR
£

Hi

|

EERNEINNE NN
DN NSO (Moo
AN EISEENNN
OO x|~]| Dse
N [[B[N]O]|O|=~
HENREGNENE
BENNRSNEEE
HEERSRENE

CS489/698 (c) 2017 P. Poupart 10

Generative Adversarial Networks

* Approach based on game theory

* Two networks:
1. Generatorg(z;W,) - x

2. Discriminatord(x; W) = Pr(x is real)
* Objective

ITMl/lIl maxz log Pr(x,, is real; W,;) + log Pr(g(zn g) is fake; Wd)
)

= mln maxz log d(x,; W5) + log (1 — d(g(Zn Wy); Wd))
Wg

Generative Adversarial Networks

 Picture

GAN training

* Repeat until convergence

— For k steps do
e Sample z4, ..., Z,,, from Pr(z)
* Sample x4, ..., X, from training set
* Update discriminator by ascending its stochastic gradient

Vw, (% i [log d(xn; Wq) + log (1 — d(g(zn; Wy); Wd))])

n=1

— Sample z4, ..., Zz,,, from Pr(z)
— Update generator by descending its stochastic gradient

T, (%2 log (1 — d(g(zn; Wy); Wd))>

GAN training

* In the limit (with sufficiently expressive networks,
sufficient data and global convergence)
— Pr(x|z; Wg) — true data distribution
— Pr(x is real; W,) — 0.5 (for real and fake data)

* Problems in practice:
— Imbalance: one network may dominate the other
— Local convergence

Images generated with GANSs

c)

* Right columns are nearest neighbour training examples of
adjacent columns

CS489/698 (c) 2017 P. Poupart

15

