CS489/698 Lecture 2: January 9th, 2017

Nearest Neighbour [RN] Sec. 18.8.1, [HTF] Sec. 2.3.2, [D] Chapt. 3, [B] Sec. 2.5.2, [M] Sec. 1.4.2

Inductive Learning (recap)

Induction

- Given a training set of examples of the form (x, f(x))
 - x is the input, f(x) is the output
- Return a function h that approximates f
 - *h* is called the hypothesis

Supervised Learning

- Two types of problems
 - 1. Classification:
 - 2. Regression

• NB: The nature (categorical or continuous) of the domain (input space) of f does not matter

Classification Example

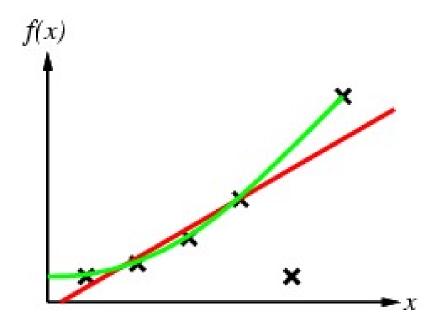
- Problem: Will you enjoy an outdoor sport based on the weather?
- Training set:

Sky	Humidity	Wind	Water	Forecast	EnjoySport
Sunny	Normal	Strong	Warm	Same	yes
Sunny	High	Strong	Warm	Same	yes
Sunny	High	Strong	Warm	Change	no
Sunny	High	Strong	Cool	Change	yes
		χ			f(x)

- Possible Hypotheses:
 - $-h_1:S=sunny \rightarrow enjoySport=yes$
 - $-h_2$: $Wa = cool \text{ or } F = same \rightarrow enjoySport = yes$

Regression Example

• Find function h that fits f at instances x



More Examples

Problem	Domain	Range	Classification / Regression
Spam Detection			
Stock price prediction			
Speech recognition			
Digit recognition			
Housing valuation			
Weather prediction			

Hypothesis Space

- Hypothesis space H
 - Set of all hypotheses h that the learner may consider
 - Learning is a search through hypothesis space
- Objective: find h that minimizes
 - Misclassification
 - Or more generally some error function
 with respect to the training examples
- But what about unseen examples?

Generalization

- A good hypothesis will generalize well
 - i.e., predict unseen examples correctly
- Usually ...
 - Any hypothesis h found to approximate the target function f well over a **sufficiently large set of training examples** will also approximate the target function well over any unobserved examples

Inductive Learning

- Goal: find an h that agrees with f on training set
 - -h is **consistent** if it agrees with f on all examples
- Finding a consistent hypothesis is not always possible
 - Insufficient hypothesis space:
 - E.g., it is not possible to learn exactly f(x) = ax + b + xsin(x) when H = space of polynomials of finite degree
 - Noisy data
 - E.g., in weather prediction, identical conditions may lead to rainy and sunny days

Inductive Learning

- A learning problem is realizable if the hypothesis space contains the true function otherwise it is unrealizable.
 - Difficult to determine whether a learning problem is realizable since the true function is not known
- It is possible to use a very large hypothesis space
 - For example: H = class of all Turing machines
- But there is a tradeoff between expressiveness of a hypothesis class and the complexity of finding a good hypothesis

Nearest Neighbour Classification

Classification function

$$h(x) = y_{x^*}$$

where y_{χ^*} is the label associated with the nearest neighbour

$$x^* = argmin_{x'} d(x, x')$$

• Distance measures: d(x, x')

$$L_1: d(x, x') = \sum_{j=1}^{M} |x_j - x_j'|$$

$$L_2: d(x, x') = \left(\sum_{j=1}^{M} |x_j - x_j'|^2\right)^{1/2}$$

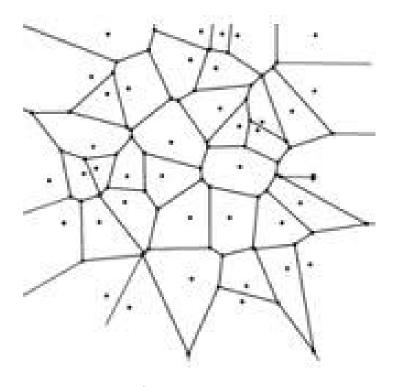
...

$$L_p: d(x, x') = \left(\sum_{j=1}^{M} |x_j - x_j'|^p\right)^{1/p}$$

Weighted dimensions: $d(x, x') = \left(\sum_{j=1}^{M} c_j |x_j - x_j'|^p\right)^{1/p}$

Voronoi Diagram

- Partition implied by nearest neighbor fn h
 - Assuming Euclidean distance

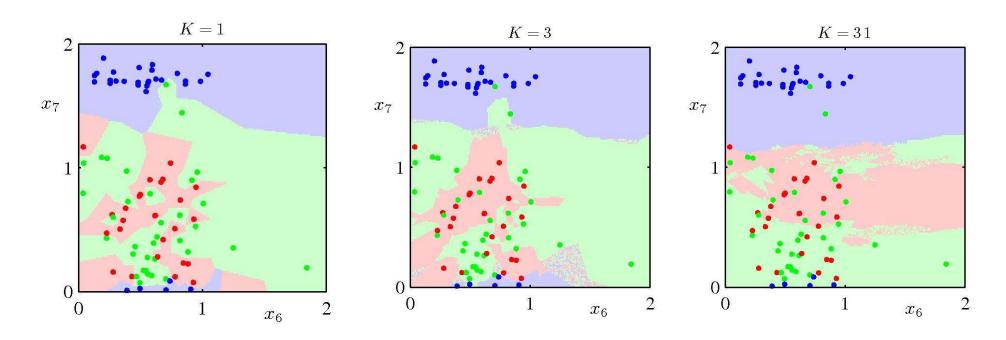


K-Nearest Neighbour

- Nearest neighbour often instable (noise)
- Idea: assign most frequent label among knearest neighbours
 - Let knn(x) be the k-nearest neighbours of x according to distance d
 - Label: $y_x \leftarrow mode(\{y_{x'}|x' \in knn(x)\})$

Effect of *K*

- *K* controls the degree of smoothing.
- Which partition do you prefer? Why?

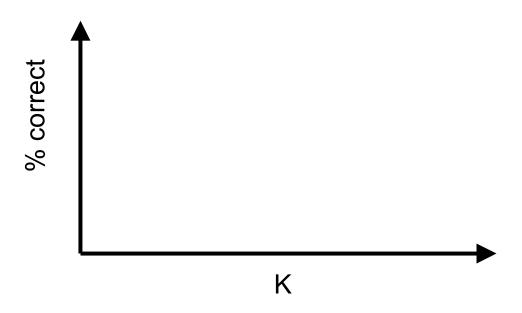


Performance of a learning algorithm

- A learning algorithm is good if it produces a hypothesis that does a good job of predicting classifications of unseen examples
- Verify performance with a test set
 - 1. Collect a large set of examples
 - 2. Divide into 2 disjoint sets: training set and test set
 - 3. Learn hypothesis h with training set
 - 4. Measure percentage of correctly classified examples by h in the test set

The effect of K

- Best *K* depends on
 - Problem
 - Amount of training data



Underfitting

- **Definition:** underfitting occurs when an algorithm finds a hypothesis h with training accuracy that is lower than the future accuracy of some other hypothesis h'
- Amount of underfitting of h:
 max {0, max futureAccuracy(h') trainAccuracy(h)}
 ≈ max {0, max testAccuracy(h') trainAccuracy(h)}
- Common cause:
 - Classifier is not expressive enough

Overfitting

- Definition: overfitting occurs when an algorithm finds a hypothesis h with higher training accuracy than its future accuracy.
- Amount of overfitting of *h*:

```
\max \{0, trainAccuracy(h) - futureAccuracy(h)\}\
\approx \max \{0, trainAccuracy(h) - testAccuracy(h)\}\
```

- Common causes:
 - Classifier is too expressive
 - Noisy data
 - Lack of data

Choosing K

- How should we choose K?
 - Ideally: select K with highest future accuracy
 - In practice: select K with highest test accuracy
- Need to ensure that test accuracy is close to future accuracy
 - Test accuracy becomes more reliable as we increase the size of the test set
 - However, this reduces the amount of data left for training
- Popular solution: cross-validation

Cross-Validation

- Repeatedly split data in two parts, one for training, one for testing the accuracy of a hypothesis and report the average accuracy.
- **k-fold cross validation**: split data in k equal size subsets. Run k experiments, each time testing on one subset the hypothesis trained on the remaining subsets. Compute the average accuracy of the k experiments.
- Picture:

Selecting the Number of Neighbours by Cross-Validation

```
Let k be the number of neighbours
Let k' be the number of data splits
For k = 1 to max # of neighbours
         For i = 1 to k' do
                 h_{ki} \leftarrow train(k, data_{1..i-1.i+1..k'})
                 acc_{ki} \leftarrow test(h_{ki}, data_i)
        acc_k \leftarrow average(\{acc_{ki}\}_{\forall i})
k^* \leftarrow argmax_k acc_k
h_{k^*} \leftarrow train(k^*, data_{1,k'})
Return k^*, h_{k^*}, acc_{k^*}
```

Choosing a Hypothesis

- After determining the optimal number of neighbours k^* by cross validation, what hypothesis should we return?
- We could return any of the h_{ki} hypotheses, but we can do better.
- Instead return a new hypothesis h_{k^*} trained with all the data
 - The future accuracy of h_{k^*} is likely to be better than the future accuracy of each h_{k^*i} since h_{k^*} is trained with all the data
 - acc_{k^*} (average test accuracy of each h_{k^*i}) is a good (conservative) estimate of the future accuracy of h_{k^*}

Weighted K-Nearest Neighbour

 We can often improve K-nearest neighbours by weighting each neighbour based on some distance measure

$$w(x,x') \propto \frac{1}{distance(x,x')}$$

Label

$$y_x \leftarrow argmax_y \sum_{\{x' \mid x' \in knn(x) \land y = y_{x'}\}} w(x, x')$$

K-Nearest Neighbour Regression

- We can also use knn for regression
- Let y_x be a real value instead of a categorical label
- K-nearest neighbour regression:

$$y_x \leftarrow average(\{y_{x'}|x' \in knn(x)\})$$

Weighted K-nearest neighbour regression:

$$y_x \leftarrow \sum_{x' \in knn(x)} w(x, x') y_{x'}$$