CS489/698 Lecture 17: March 8, 2017

Convolutional Neural Networks [GBC] Chap. 9

Large networks

- What kind of neural networks can be used for large or variable length input vectors (e.g., time series)?
- Common networks:
 - Convolutional networks
 - Recursive networks
 - Recurrent networks

Convolution

 Convolution: mathematical operation on two functions x() and w() that produces a third function y() that can be viewed as a modified version of one of the original functions x()

$$y(i) = \int_{t} x(t)w(i-t)dt$$
$$y(i) = (x * w)(t)$$

Where * is an operator denoting a convolution

Example Smoothing

Discrete convolution

Discrete convolution

$$y(i) = \sum_{t=-\infty}^{\infty} x(t)w(i-t)$$

Multidimensional convolution

$$y(i,j) = \sum_{t_1 = -\infty}^{\infty} \sum_{t_2 = -\infty}^{\infty} x(t_1, t_2) w(i - t_1, j - t_2)$$

Example: Edge Detection

- Consider a grey scale image
- Detect vertical edges: y(i,j) = x(i,j) x(i-1,j)

hence
$$w(i - t_1, j - t_2) = \begin{cases} 1 & t_1 = i, t_2 = j \\ -1 & t_1 = i + 1, t_2 = j \\ 0 & \text{otherwise} \end{cases}$$

CS489/698 (c) 2017 P. Poupart

Convolutions for feature extraction

- In neural networks
 - A convolution denotes the linear combination of a subset of units based on a specific pattern of weights.

$$a_j = \sum_i w_{ji} z_i$$

 Convolutions are often combined with an activation function to produce a feature

$$z_j = h(a_j) = h\left(\sum_i w_{ji} z_i\right)$$

Gabor filters

• Gabor filters: common feature maps inspired by the human vision system

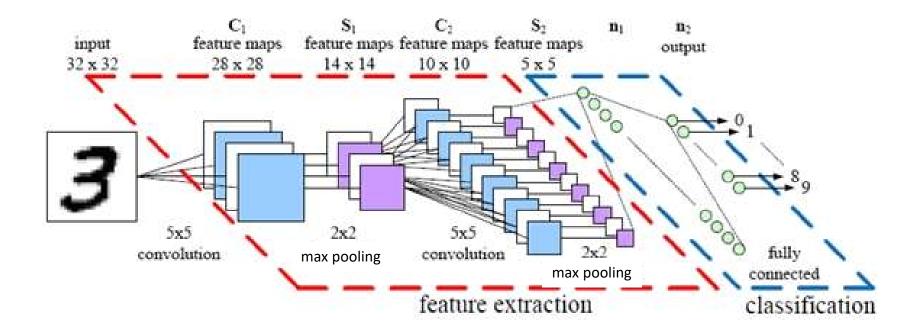
	1 1 1 1 1 1 1 11	
/// = = = = = = = = = = = = = = = = = =	1 1 1 1 1 1 1 1	
1111 = = 0 10 10	1 1 1 1 1 1 1 1	
0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	
0 0 0 8 0 0 0 0	1 1 1 1 1 1 1 1	
1 1 1 = = 1 1 1	0 0 0 0 0 0 0 0	
111===11	0 0 0 0 0 0 0 0	
1 1 1 1 1 1 1		

• Weights:

Grey: zero

White: positive

Black: negative


Convolution Neural Network

- A convolutional neural network refers to any network that includes an alternation of convolution and pooling layers, where some of the convolution weights are shared.
- Architecture:

Pooling

- Pooling: **commutative** mathematical operation that combines several units
- Examples:
 - Max, sum, product, Euclidean norm, etc.
- Commutative property (order does not matter):
 max(a, b) = max(b, a)

Example: Digit Recognition

Benefits

- Sparse interactions
 - Fewer connections
- Parameter sharing
 - Fewer weights
- Locally equivariant representation
 - Locally invariant to translations
 - Handle inputs of varying length

Training

 Convolutional neural networks are trained in the same way as other neural networks

– E.g., backpropagation

- Weight sharing:
 - Combine gradients of shared weights into a single gradient

Applications

- Image processing
- Data with sequential, spatial, or tensor patterns