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Deep Neural Networks
[GBC] Chap. 6, 7, 8
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Outline

• Deep Neural Networks
– Gradient Vanishing

• Rectified linear units

– Overfitting
• Dropout

• Breakthroughs
– Acoustic modeling in speech recognition
– Image recognition
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Deep Neural Networks

• Definition: neural network with many hidden layers

• Advantage: high expressivity
• Challenges:

– How should we train a deep neural network?
– How can we avoid overfitting?
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Expressiveness

• Neural networks with one hidden layer of 
sigmoid/hyperbolic units can approximate arbitrarily 
closely neural networks with several layers of 
sigmoid/hyperbolic units

• However as we increase the number of layers, the 
number of units needed may decrease exponentially 
(with the number of layers)
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Example – Parity Function

• Single layer of hidden nodes

ଵ ଶ ଷ ସ inputs
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Example – Parity Function

• layers of hidden nodes
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The power of depth (practice)

• Challenge: how to train deep NNs?
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Speech

• 2006 (Hinton, al.): first effective algo for deep NN 
– layerwise training of Stacked Restricted Boltzmann 

Machines (SRBM)s

• 2009: Breakthrough in acoustic modeling
– replace Gaussian Mixture Models by SRBMs

– Improved speech recognition at Google,Microsoft,IBM

• 2013-today: recurrent neural nets (LSTM)
– Google error rate: 23% (2013)  8% (2015)

– Microsoft error rate: 5.9% (Oct 17, 2016) same as 
human performance
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Image Classification

• ImageNet Large Scale Visual Recognition Challenge
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Vanishing Gradients

• Deep neural networks of sigmoid and 
hyperbolic units often suffer from vanishing 
gradients
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Sigmoid and hyperbolic units

• Derivative is always less than 1

sigmoid hyperbolic
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Simple Example

• ସ ଷ ଶ ଵ

• Common weight initialization in (-1,1)
• Sigmoid function and its derivative always less than 1
• This leads to vanishing gradients:
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Avoiding Vanishing Gradients

• Two popular solutions:
– Pre-training
– Rectified linear units and maxout units
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Rectified Linear Units

• Rectified linear: 
– Gradient is 0 or 1
– Sparse computation

• Soft version
(“Softplus”) :
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Maxout Units
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Overfitting

• High expressivity increases the risk of 
overfitting
– # of parameters is often larger than the amount of 

data

• Solutions: 
– Regularization
– Dropout
– Data augmentation
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Dropout

• Idea: randomly “drop” some units from the network 
when training

• Training: at each iteration of gradient descent
– Each hidden unit is dropped with prob. 0.5
– Each input unit is dropped with prob. 0.2

• Prediction (testing):
– Multiply the output of each unit by one minus its drop 

probability
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Intuition

• Dropout can be viewed as an approximate form 
of ensemble learning

• In each training iteration, a different 
subnetwork is trained

• At test time, these subnetworks are “merged” 
by averaging their weights
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Robustness

• In sexual reproduction, half of the genes of two 
individuals are dropped and the remaining genes are 
merged to produce a new individual

• Genes are forced to evolve independently so that 
most combinations yield functional individuals

• Similarly, units in a neural net are forced to capture 
features that are largely independent of other units
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Applications of Deep Neural Networks

• Speech Recognition
• Image recognition
• Machine translation
• Control
• Any application of shallow neural networks
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Acoustic Modeling in Speech Recognition
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Acoustic Modeling in Speech Recognition
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Image Recognition

• Convolutional Neural Network
– With rectified linear units and dropout
– Data augmentation for transformation invariance
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ImageNet Breakthrough

• Results: ILSVRC-2012
• From Krizhevsky, Sutskever, Hinton
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ImageNet Breakthrough

• From Krizhevsky, Sutskever, Hinton


