CS489/698 Lecture 15: March 1, 2017

Hidden Markov Models [RN] Sec. 15.3 [B] Sec. 13.1-13.2 [M] 17.3-17.5

Sequence Data

- So far, we assumed that the data instances are classified independently
 - More precisely, we assumed that the data is iid (identically and independently distributed)
 - E.g., text categorization, digit recognition in separate images, etc.
- In many applications, the data arrives sequentially and the classes are correlated
 - E.g., weather prediction, robot localization, speech recognition, activity recognition

Speech Recognition

Classification

• Extension of some classification models for sequence data

	Independent classification	Correlated classification
Generative models	Mixture of Gaussians	Hidden Markov Model
Discriminative	Logistic Regression	Conditional Random Field
	Feed Forward Neural Network	Recurrent Neural Network

Hidden Markov Model

Mixture of Gaussians HMMs

CS489/698 (c) 2017 P. Poupart

Assumptions

• **Stationary Process**: transition and emission distributions are identical at each time step

$$Pr(x_t|y_t) = Pr(x_{t+1}|y_{t+1}) \quad \forall t$$

$$Pr(y_t|y_{t-1}) = Pr(y_{t+1}|y_t) \quad \forall t$$

• Markovian Process: next state is independent of previous states given the current state

$$\Pr(y_{t+1}|y_t, y_{t-1}, \dots, y_1) = \Pr(y_{t+1}|y_t) \quad \forall t$$

Hidden Markov Model

• Graphical Model

- Parameterization
 - Transition distribution:
 - Emission distribution:
- Joint distribution:

Mobile Robot Localisation

• Example of a Markov process

• Problem: uncertainty grows over time...

Mobile Robot Localisation

- Hidden Markov Model:
 - y: coordinates of the robot on a map
 - x: distances to surrounding obstacles (measured by laser range finders or sonars)
 - $Pr(y_t|y_{t-1})$: movement of the robot with uncertainty $Pr(x_t|y_t)$: uncertainty in the measurements provided by laser range finders and sonars
- Localisation: $Pr(y_t | x_t, ..., x_1)$?

Inference in temporal models

- Four common tasks:
 - Monitoring: $\Pr(y_t|x_{1..t})$
 - Prediction: $\Pr(y_{t+k}|x_{1..t})$
 - Hindsight: $Pr(y_k | x_{1..t})$ where k < t
 - Most likely explanation:

 $argmax_{y_1,\dots,y_t} \Pr(y_{1..t}|x_{1..t})$

• What algorithms should we use?

Monitoring

- Pr(y_t | x_{1..t}): distribution over current state given observations
- Examples: robot localisation, patient monitoring
- Recursive computation:
 - $\Pr(y_t|x_{1..t}) \propto \Pr(x_t|y_t, x_{1..t-1})\Pr(y_t|x_{1..t-1})$ by Bayes' thm
 - = $\Pr(x_t|y_t) \Pr(y_t|x_{1..t-1})$ by conditional independence
 - = $\Pr(x_t|y_t) \sum_{y_{t-1}} \Pr(y_t, y_{t-1}|x_{1..t-1})$ by marginalization
 - $= \Pr(x_t|y_t) \sum_{y_{t-1}} \Pr(y_t|y_{t-1}, x_{1..t-1}) \Pr(y_{t-1}|x_{1..t-1})$

by chain rule

= $\Pr(x_t|y_t) \sum_{y_{t-1}} \Pr(y_t|y_{t-1}) \Pr(y_{t-1}|x_{1..t-1})$ by cond ind

Forward Algorithm

• Compute $Pr(y_t|x_{1..t})$ by forward computation

```
\begin{aligned} \Pr(y_1|x_1) &\propto \Pr(x_1|y_1) \Pr(y_1) \\ \text{For } i &= 2 \text{ to } t \text{ do} \\ \Pr(y_i|x_{1..i}) &\propto \Pr(x_i|y_i) \sum_{y_{i-1}} \Pr(y_i|y_{i-1}) \Pr(y_{i-1}|x_{1..i-1}) \\ \text{End} \end{aligned}
```

• Linear complexity in *t*

Prediction

- Pr(y_{t+k} | x_{1..t}): distribution over future state given observations
- Examples: weather prediction, stock market prediction
- Recursive computation

 $\begin{aligned} &\Pr(y_{t+k}|x_{1..t}) = \sum_{y_{t+k-1}} \Pr(y_{t+k}, y_{t+k-1}|x_{1..t}) \text{ by marginalization} \\ &= \sum_{y_{t+k-1}} \Pr(y_{t+k}|y_{t+k-1}, x_{1..t}) \Pr(y_{t+k-1}|x_{1..t}) \text{ by chain rule} \\ &= \sum_{y_{t+k-1}} \Pr(y_{t+k}|y_{t+k-1}) \Pr(y_{t+k-1}|x_{1..t}) \text{ by cond ind} \end{aligned}$

Forward Algorithm

- 1. Compute $\Pr(y_t | x_{1..t})$ by forward computation $\Pr(y_1 | x_1) \propto \Pr(x_1 | y_1) \Pr(y_1)$ For i = 1 to t do $\Pr(y_i | x_{1..i}) \propto \Pr(x_i | y_i) \sum_{y_{i-1}} \Pr(y_i | y_{i-1}) \Pr(y_{i-1} | x_{1..i-1})$ End
- 2. Compute $\Pr(y_{t+k}|x_{1..t})$ by forward computation For j = 1 to k do $\Pr(y_{t+j}|x_{1..t}) = \sum_{y_{i-1}} \Pr(y_{t+j}|y_{t+j-1}) \Pr(y_{t+j-1}|x_{1..t})$ End
- Linear complexity in t + k

CS489/698 (c) 2017 P. Poupart

Hindsight

- Pr(y_k | x_{1..t}) for k < t: distribution over a past state given observations
- Example: delayed activity/speech recognition
- computation:

 $Pr(y_k|x_{1..t}) \propto Pr(y_k, x_{k+1..t}|x_{1..k}) \text{ by conditioning}$ = $Pr(y_k|x_{1..k}) Pr(x_{k+1..t}|y_k) \text{ by chain rule}$

• Recursive computation

 $Pr(x_{k+1..t}|y_k) = \sum_{y_{k+1}} Pr(y_{k+1}, x_{k+1..t}|y_k) \text{ by marginalization} \\ = \sum_{y_{k+1}} Pr(y_{k+1}|y_k) Pr(x_{k+1..t}|y_{k+1}) \text{ by chain rule} \\ = \sum_{y_{k+1}} Pr(y_{k+1}|y_k) Pr(x_{k+1}|y_{k+1}) Pr(x_{k+2..t}|y_{k+1}) \text{ by cond ind} \end{aligned}$

Forward-backward algorithm

- 1. Compute $\Pr(y_k | x_{1..k})$ by forward computation $\Pr(y_1 | x_1) \propto \Pr(x_1 | y_1) \Pr(y_1)$ For i = 2 to k do $\Pr(y_i | x_{1..i}) \propto \Pr(x_i | y_i) \sum_{y_{i-1}} \Pr(y_i | y_{i-1}) \Pr(y_{i-1} | x_{1..i-1})$ End
- 2. Compute $\Pr(x_{k+1..t}|y_k)$ by backward computation $\Pr(x_t|y_{t-1}) = \sum_{y_t} \Pr(y_t|y_{t-1}) \Pr(x_t|y_t)$ For j = t - 1 downto k do $\Pr(x_{j..t}|y_{j-1}) = \sum_{y_j} \Pr(y_j|y_{j-1}) \Pr(x_j|y_j) \Pr(x_{j+1..t}|y_j)$ End
- 3. $\Pr(y_k|x_{k+1..t}) \propto \Pr(y_k|x_{1..k}) \Pr(x_{k+1..t}|y_k)$
- Linear complexity in t

CS489/698 (c) 2017 P. Poupart

Most likely explanation

- $argmax_{y_{1..t}} \Pr(y_{1..t}|x_{1..t})$: most likely state sequence given observations
- Example: speech recognition
- Computation:

 $\max_{y_{1..t}} \Pr(y_{1..t}|x_{1..t}) = \max_{y_t} \Pr(x_t|y_t) \max_{y_{1..t-1}} \Pr(y_{1..t}|x_{1..t-1})$

• Recursive computation:

 $\max_{\substack{y_{1..i-1}\\y_{i-1}}} \Pr(y_{1..i}|x_{1..i-1}) \propto \\ \max_{y_{i-1}} \Pr(y_{i}|y_{i-1}) \Pr(x_{i-1}|y_{i-1}) \max_{y_{1..i-2}} \Pr(y_{1..i-1}|x_{1..i-2})$

Viterbi Algorithm

1. Compute $\max_{y_{1..t}} \Pr(y_{1..t}|x_{1..t})$ by dynamic programming $\max_{y_1} \Pr(y_{1..2}|x_1) \propto \max_{y_1} \Pr(y_2|y_1) \Pr(x_1|y_1) \Pr(y_1)$ For i = 2 to t - 1 do $\max_{y_{1..i}} \Pr(y_{1..i+1}|x_{1..i}) \propto \max_{y_{1..i}} \Pr(y_{1..i+1}|x_{1..i}) \Pr(x_i|y_i) \max_{y_{1..i-1}} \Pr(y_{1..i}|x_{1..i-1})$

End

- $\max_{y_{1..t}} \Pr(y_{1..t}|x_{1..t}) \propto \max_{y_t} \Pr(x_t|y_t) \max_{y_{1..t-1}} \Pr(y_{1..t}|x_{1..t-1})$
- Linear complexity in *t*

Case Study: Activity Recognition

- Task: infer activities performed by a user of a smart walker
 - Inputs: sensor measurements
 - Output: activity

Backward view

CS489/698 (c) 2017 P. Poupart

Inputs: Raw Sensor Data

- 8 channels:
 - Forward acceleration
 - Lateral acceleration
 - Vertical acceleration
 - Load on left rear wheel
 - Load on right rear wheel
 - Load on left front wheel
 - Load on right front wheel
 - Wheel rotation counts (speed)

• Data recorded at 50 Hz and digitized (16 bits)

Data Collection

- 8 walker users at Winston Park (84-97 years old)
- 12 older adults (80-89 years old) in the Kitchener-Waterloo area who do not use walkers

Output: Activities

- Not Touching Walker (NTW)
- Standing (ST)
- Walking Forward (WF)
- Turning Left (TL)
- Turning Right (TR)
- Walking Backwards (WB)
- Sitting on the Walker (SW)
- Reaching Tasks (RT)
- Up Ramp/Curb (UR/UC)
- Down Ramp/Curb (DR/DC)

CS489/698 (c) 2017 P. Poupart

Hidden Markov Model (HMM)

- Parameters
 - Initial state distribution: $\pi_{class} = \Pr(y_1 = class)$
 - Transition probabilities: $\theta_{class'|class} = \Pr(y_{t+1} = class'|y_t = class)$
 - Emission probabilities: $\phi^i_{val|class} = \Pr(x^i_t = val|y_t = class)$

or
$$N(val|\mu_{class}^{i}, \sigma_{class}^{i}) = \Pr(x_{t}^{i} = val|y_{t} = class)$$

- Maximum likelihood:
 - Supervised: $\pi^*, \theta^*, \phi^* = argmax_{\pi,\theta,\phi} \Pr(y_{1:T}, x_{1:T} | \pi, \theta, \phi)$
 - Unsupervised: π^* , θ^* , $\phi^* = argmax_{\pi,\theta,\phi} \Pr(x_{1:T}|\pi,\theta,\phi)$

Demo

Maximum Likelihood

- Supervised Learning: *y*'s are known
- Objective: $argmax_{\pi,\theta,\phi} \Pr(y_{1..t}, x_{1..t} | \pi, \theta, \phi)$
- Derivation:
 - Set derivative to 0
 - Isolate parameters π , θ , ϕ
- Consider a single input x per time step
- Let $y \in \{c_1, c_2\}$ and $x \in \{v_1, v_2\}$

Multinomial emissions

- Let $\#c_i^{start}$ be # times of that process **starts** in class c_i
- Let $\#c_i$ be # of times that process is in class c_i
- Let $\#(c_i, c_j)$ be # of times that c_i follows c_j
- Let $\#(v_i, c_j)$ be # of times that v_i occurs with c_j

•
$$\Pr(y_{0..t}, x_{1..t}) = \Pr(y_0) \prod_{i=1}^{t} \Pr(y_i | y_{i-1}) \Pr(x_i | y_i)$$

$$= (\pi_{c_1})^{\#c_1^{start}} (1 - \pi_{c_1})^{\#c_2^{start}} (\theta_{c_1|c_1})^{\#(c_1,c_1)} (1 - \theta_{c_1|c_1})^{\#(c_2,c_1)}$$

$$(\theta_{c_1|c_2})^{\#(c_1,c_2)} (1 - \theta_{c_1|c_2})^{\#(c_2,c_2)} (\phi_{v_1|c_1})^{\#(v_1,c_1)} (1 - \phi_{v_1|c_1})^{\#(v_2,c_1)}$$

$$(\phi_{v_1|c_2})^{\#(v_1,c_2)} (1 - \phi_{v_1|c_2})^{\#(v_2,c_2)}$$

Multinomial emissions

$$\begin{aligned} \bullet \ \ argmax_{\pi,\theta,\phi} \ \ Pr(y_{1..t},x_{1..t}|\pi,\theta,\phi) \\ \\ \Rightarrow \begin{cases} argmax_{\pi_{c_1}}(\pi_{c_1})^{\#c_1^{start}}(1-\pi_{c_1})^{\#c_2^{start}} \\ argmax_{\theta_{c_1|c_1}}(\theta_{c_1|c_1})^{\#(c_1,c_1)}(1-\theta_{c_1|c_1})^{\#(c_2,c_1)} \\ argmax_{\theta_{c_1|c_2}}(\theta_{c_1|c_2})^{\#(c_1,c_2)}(1-\theta_{c_1|c_2})^{\#(c_2,c_2)} \\ argmax_{\phi_{v_1|c_1}}(\phi_{v_1|c_1})^{\#(v_1,c_1)}(1-\phi_{v_1|c_1})^{\#(v_2,c_1)} \\ argmax_{\phi_{v_1|c_2}}(\phi_{v_1|c_2})^{\#(v_1,c_2)}(1-\phi_{v_1|c_2})^{\#(v_2,c_2)} \end{cases}$$

Multinomial emissions

• Optimization problem:

$$\max_{\pi_{c_1}} (\pi_{c_1})^{\#c_1^{start}} (1 - \pi_{c_1})^{\#c_2^{start}} \Rightarrow \max_{\pi_{c_1}} (\#c_1^{start}) \log(\pi_{c_1}) + (\#c_2^{start}) \log(1 - \pi_{c_1})$$

• Set derivative to 0:

$$\begin{split} 0 &= \frac{\#c_1^{start}}{\pi_{c_1}} - \frac{\#c_2^{start}}{1 - \pi_{c_1}} \\ \Rightarrow (1 - \pi_{c_1})(\#c_1^{start}) = (\pi_{c_1})(\#c_2^{start}) \\ \Rightarrow \pi_{c_1} &= \frac{\#c_1^{start}}{\#c_1^{start} + \#c_2^{start}} \end{split}$$

CS489/698 (c) 2017 P. Poupart

Relative Frequency Counts

Maximum likelihood solution

 $\begin{aligned} \pi_{c_1^{start}} &= \#c_1^{start} / (\#c_1^{start} + \#c_2^{start}) \\ \theta_{c_1|c_1} &= \#(c_1, c_1) / (\#(c_1, c_1) + \#(c_2, c_1)) \\ \theta_{c_1|c_2} &= \#(c_1, c_2) / (\#(c_1, c_2) + \#(c_2, c_2)) \\ \phi_{v_1|c_1} &= \#(v_1, c_1) / (\#(v_1, c_1) + \#(v_2, c_1)) \\ \phi_{v_1|c_2} &= \#(v_1, c_2) / (\#(v_1, c_2) + \#(v_2, c_2)) \end{aligned}$

Gaussian Emissions

Maximum likelihood solution

$$\begin{aligned} \pi_{c_1^{start}} &= \#c_1^{start} / (\#c_1^{start} + \#c_2^{start}) \\ \theta_{c_1|c_1} &= \#(c_1, c_1) / (\#(c_1, c_1) + \#(c_2, c_1)) \\ \theta_{c_1|c_2} &= \#(c_1, c_2) / (\#(c_1, c_2) + \#(c_2, c_2)) \\ \mu_{c_1} &= \frac{1}{\#c_1} \sum_{\{t|y_t = c_1\}} x_t, \quad \sigma_{c_1}^2 &= \frac{1}{\#c_1} \sum_{\{t|y_t = c_1\}} (x_t - \mu_{c_1})^2 \\ \mu_{c_2} &= \frac{1}{\#c_2} \sum_{\{t|y_t = c_2\}} x_t, \quad \sigma_{c_2}^2 &= \frac{1}{\#c_2} \sum_{\{t|y_t = c_2\}} (x_t - \mu_{c_2})^2 \end{aligned}$$

Example

Monitoring

- Suppose we observe the following sequence of features: $x_{1..3} = (v_1, v_1, v_2)$
- What is the probability of $y_t = c_1$ at each time step?
- Forward algorithm: iterate $\Pr(y_i|x_{1..i}) \propto \Pr(x_i|y_i) \sum_{y_{i-1}} \Pr(y_i|y_{i-1}) \Pr(y_{i-1}|x_{1..i-1})$

Example

Most likely explanation

- In activity recognition, we are not interested in estimating the activity probabilities at each time step in isolation
- Instead, we want the most likely explanation (i.e., sequence of classes) of the measurements $argmax_{y_1,...,y_t} \Pr(y_{1..t}|x_{1..t})$
- Viterbi algorithm: iterate

 $\max_{\substack{y_{1..i}\\y_{i..i}}} \Pr(y_{1..i+1}|x_{1..i}) \propto \\ \max_{y_i} \Pr(y_{i+1}|y_i) \Pr(x_i|y_i) \max_{\substack{y_{1..i-1}\\y_{1..i-1}}} \Pr(y_{1..i}|x_{1..i-1})$

Example