CS489/698

Lecture 15: March 1, 2017

Hidden Markov Models
[RN] Sec. 15.3 [B] Sec. 13.1-13.2
[M] 17.3-17.5

Sequence Data

- So far, we assumed that the data instances are classified independently
- More precisely, we assumed that the data is iid (identically and independently distributed)
- E.g., text categorization, digit recognition in separate images, etc.
- In many applications, the data arrives sequentially and the classes are correlated
- E.g., weather prediction, robot localization, speech recognition, activity recognition

Speech Recognition

$|\mathrm{b}| \quad$ ey \mid z \mid th \mid ih \mid er \mid em \mid Bayes' \mid Theorem
CS489/698 (c) 2017 P. Poupart

Classification

- Extension of some classification models for sequence data

	Independent classification	Correlated classification
Generative models	Mixture of Gaussians	Hidden Markov Model
Discriminative models	Logistic Regression	Conditional Random Field
	Feed Forward Neural Network	Recurrent Neural Network

Hidden Markov Model

Mixture of Gaussians
HMMs

Assumptions

- Stationary Process: transition and emission distributions are identical at each time step

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{t} \mid y_{t}\right)=\operatorname{Pr}\left(x_{t+1} \mid y_{t+1}\right) \quad \forall t \\
& \operatorname{Pr}\left(y_{t} \mid y_{t-1}\right)=\operatorname{Pr}\left(y_{t+1} \mid y_{t}\right) \quad \forall t
\end{aligned}
$$

- Markovian Process: next state is independent of previous states given the current state

$$
\operatorname{Pr}\left(y_{t+1} \mid y_{t}, y_{t-1}, \ldots, y_{1}\right)=\operatorname{Pr}\left(y_{t+1} \mid y_{t}\right) \quad \forall t
$$

Hidden Markov Model

- Graphical Model
- Parameterization
- Transition distribution:
- Emission distribution:
- Joint distribution:

Mobile Robot Localisation

- Example of a Markov process

- Problem: uncertainty grows over time...

Mobile Robot Localisation

- Hidden Markov Model:
y : coordinates of the robot on a map
x : distances to surrounding obstacles (measured by laser range finders or sonars)
$\operatorname{Pr}\left(y_{t} \mid y_{t-1}\right)$: movement of the robot with uncertainty $\operatorname{Pr}\left(x_{t} \mid y_{t}\right)$: uncertainty in the measurements provided by laser range finders and sonars
- Localisation: $\operatorname{Pr}\left(y_{t} \mid x_{t}, \ldots, x_{1}\right)$?

Inference in temporal models

- Four common tasks:
- Monitoring: $\operatorname{Pr}\left(y_{t} \mid x_{1 . . t}\right)$
- Prediction: $\operatorname{Pr}\left(y_{t+k} \mid x_{1 . . t}\right)$
- Hindsight: $\operatorname{Pr}\left(y_{k} \mid x_{1 . t}\right)$ where $k<t$
- Most likely explanation:

$$
\operatorname{argmax}_{y_{1}, \ldots, y_{t}} \operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . t}\right)
$$

- What algorithms should we use?

Monitoring

- $\operatorname{Pr}\left(y_{t} \mid x_{1 . . t}\right)$: distribution over current state given observations
- Examples: robot localisation, patient monitoring
- Recursive computation:
$\operatorname{Pr}\left(y_{t} \mid x_{1 . t}\right) \propto \operatorname{Pr}\left(x_{t} \mid y_{t}, x_{1 . t-1}\right) \operatorname{Pr}\left(y_{t} \mid x_{1 . t-1}\right)$ by Bayes' thm
$=\operatorname{Pr}\left(x_{t} \mid y_{t}\right) \operatorname{Pr}\left(y_{t} \mid x_{1 . t-1}\right)$ by conditional independence
$=\operatorname{Pr}\left(x_{t} \mid y_{t}\right) \sum_{y_{t-1}} \operatorname{Pr}\left(y_{t}, y_{t-1} \mid x_{1 . t-1}\right)$ by marginalization
$=\operatorname{Pr}\left(x_{t} \mid y_{t}\right) \sum_{y_{t-1}} \operatorname{Pr}\left(y_{t} \mid y_{t-1}, x_{1 . t-1}\right) \operatorname{Pr}\left(y_{t-1} \mid x_{1 . t-1}\right)$
by chain rule
$=\operatorname{Pr}\left(x_{t} \mid y_{t}\right) \sum_{y_{t-1}} \operatorname{Pr}\left(y_{t} \mid y_{t-1}\right) \operatorname{Pr}\left(y_{t-1} \mid x_{1 . t-1}\right)$ by cond ind

Forward Algorithm

- Compute $\operatorname{Pr}\left(y_{t} \mid x_{1 . t}\right)$ by forward computation
$\operatorname{Pr}\left(y_{1} \mid x_{1}\right) \propto \operatorname{Pr}\left(x_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)$
For $i=2$ to t do

$$
\operatorname{Pr}\left(y_{i} \mid x_{1 . i}\right) \propto \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \sum_{y_{i-1}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(y_{i-1} \mid x_{1 . i-1}\right)
$$

End

- Linear complexity in t

Prediction

- $\operatorname{Pr}\left(y_{t+k} \mid x_{1 . . t}\right)$: distribution over future state given observations
- Examples: weather prediction, stock market prediction
- Recursive computation

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{t+k} \mid x_{1 . t}\right)=\sum_{y_{t+k-1}} \operatorname{Pr}\left(y_{t+k}, y_{t+k-1} \mid x_{1 . . t}\right) \text { by marginalization } \\
& =\sum_{y_{t+k-1}} \operatorname{Pr}\left(y_{t+k} \mid y_{t+k-1}, x_{1 . . t}\right) \operatorname{Pr}\left(y_{t+k-1} \mid x_{1 . . t}\right) \text { by chain rule } \\
& =\sum_{y_{t+k-1}} \operatorname{Pr}\left(y_{t+k} \mid y_{t+k-1}\right) \operatorname{Pr}\left(y_{t+k-1} \mid x_{1 . t}\right) \text { by cond ind }
\end{aligned}
$$

Forward Algorithm

1. Compute $\operatorname{Pr}\left(y_{t} \mid x_{1 . . t}\right)$ by forward computation $\operatorname{Pr}\left(y_{1} \mid x_{1}\right) \propto \operatorname{Pr}\left(x_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)$
For $i=1$ to t do

$$
\operatorname{Pr}\left(y_{i} \mid x_{1 . i}\right) \propto \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \sum_{y_{i-1}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(y_{i-1} \mid x_{1 . i-1}\right)
$$

End
2. Compute $\operatorname{Pr}\left(y_{t+k} \mid x_{1 . t}\right)$ by forward computation For $j=1$ to k do

$$
\operatorname{Pr}\left(y_{t+j} \mid x_{1 . t}\right)=\sum_{y_{i-1}} \operatorname{Pr}\left(y_{t+j} \mid y_{t+j-1}\right) \operatorname{Pr}\left(y_{t+j-1} \mid x_{1 . t}\right)
$$

End

- Linear complexity in $t+k$

Hindsight

- $\operatorname{Pr}\left(y_{k} \mid x_{1 . t}\right)$ for $k<t$: distribution over a past state given observations
- Example: delayed activity/speech recognition
- computation:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{k} \mid x_{1 . t}\right) & \propto \operatorname{Pr}\left(y_{k}, x_{k+1 . . t} \mid x_{1 . k}\right) \text { by conditioning } \\
& =\operatorname{Pr}\left(y_{k} \mid x_{1 . k}\right) \operatorname{Pr}\left(x_{k+1 . t} \mid y_{k}\right) \text { by chain rule }
\end{aligned}
$$

- Recursive computation

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{k+1 . t} \mid y_{k}\right)=\sum_{y_{k+1}} \operatorname{Pr}\left(y_{k+1}, x_{k+1 . t} \mid y_{k}\right) \text { by marginalization } \\
& =\sum_{y_{k+1}} \operatorname{Pr}\left(y_{k+1} \mid y_{k}\right) \operatorname{Pr}\left(x_{k+1 . t} \mid y_{k+1}\right) \text { by chain rule } \\
& =\sum_{y_{k+1}} \operatorname{Pr}\left(y_{k+1} \mid y_{k}\right) \operatorname{Pr}\left(x_{k+1} \mid y_{k+1}\right) \operatorname{Pr}\left(x_{k+2 . t} \mid y_{k+1}\right) \text { by cond ind }
\end{aligned}
$$

Forward-backward algorithm

1. Compute $\operatorname{Pr}\left(y_{k} \mid x_{1 . k}\right)$ by forward computation $\operatorname{Pr}\left(y_{1} \mid x_{1}\right) \propto \operatorname{Pr}\left(x_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)$
For $i=2$ to k do

$$
\operatorname{Pr}\left(y_{i} \mid x_{1 . i}\right) \propto \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \sum_{y_{i-1}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(y_{i-1} \mid x_{1 . i-1}\right)
$$

End
2. Compute $\operatorname{Pr}\left(x_{k+1 . t} \mid y_{k}\right)$ by backward computation $\operatorname{Pr}\left(x_{t} \mid y_{t-1}\right)=\sum_{y_{t}} \operatorname{Pr}\left(y_{t} \mid y_{t-1}\right) \operatorname{Pr}\left(x_{t} \mid y_{t}\right)$
For $j=t-1$ downto k do

$$
\operatorname{Pr}\left(x_{j . t} \mid y_{j-1}\right)=\sum_{y_{j}} \operatorname{Pr}\left(y_{j} \mid y_{j-1}\right) \operatorname{Pr}\left(x_{j} \mid y_{j}\right) \operatorname{Pr}\left(x_{j+1 . t} \mid y_{j}\right)
$$

End
3. $\operatorname{Pr}\left(y_{k} \mid x_{k+1 . t}\right) \propto \operatorname{Pr}\left(y_{k} \mid x_{1 . . k}\right) \operatorname{Pr}\left(x_{k+1 . . t} \mid y_{k}\right)$

- Linear complexity in t

Most likely explanation

- $\operatorname{argmax}_{y_{1 . t}} \operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . t}\right)$: most likely state sequence given observations
- Example: speech recognition
- Computation:

$$
\max _{y_{1 . t}} \operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . . t}\right)=\max _{y_{t}} \operatorname{Pr}\left(x_{t} \mid y_{t}\right) \max _{y_{1 . t-1}} \operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . t-1}\right)
$$

- Recursive computation:

$$
\begin{aligned}
& \max _{y_{1 . i-1}} \operatorname{Pr}\left(y_{1 . i} \mid x_{1 . i-1}\right) \propto \\
& \max _{y_{i-1}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(x_{i-1} \mid y_{i-1}\right) \max _{y_{1 . i-2}} \operatorname{Pr}\left(y_{1 . i-1} \mid x_{1 . i-2}\right)
\end{aligned}
$$

Viterbi Algorithm

1. Compute max $\operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . . t}\right)$ by dynamic programming

$$
\mathrm{y}_{1 . . \mathrm{t}}
$$

$\max _{y_{1}} \operatorname{Pr}\left(y_{1 . .2} \mid x_{1}\right) \propto \max \operatorname{Pr}\left(y_{2} \mid y_{1}\right) \operatorname{Pr}\left(x_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)$
$y_{1} \quad y_{1}$
For $i=2$ to $t-1$ do

$$
\begin{aligned}
\max _{1 . i i} & \operatorname{Pr}\left(y_{1 . i+1} \mid x_{1 . i}\right) \propto \\
& \max _{y_{i}} \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \max _{y_{1 . i-1}} \operatorname{Pr}\left(y_{1 . . i} \mid x_{1 . i-1}\right)
\end{aligned}
$$

End

$$
\max _{y_{1 . t}} \operatorname{Pr}\left(y_{1 . t} \mid x_{1 . t}\right) \propto \max _{y_{\mathrm{t}}} \operatorname{Pr}\left(x_{t} \mid y_{t}\right) \max _{y_{1 . t-1}} \operatorname{Pr}\left(y_{1 . t} \mid x_{1 . t-1}\right)
$$

- Linear complexity in t

Case Study: Activity Recognition

- Task: infer activities performed by a user of a smart walker
- Inputs: sensor measurements
- Output: activity

Backward view

Forward view

Inputs: Raw Sensor Data

- 8 channels:
- Forward acceleration
- Lateral acceleration
- Vertical acceleration
- Load on left rear wheel
- Load on right rear wheel
- Load on left front wheel
- Load on right front wheel
- Wheel rotation counts (speed)

- Data recorded at 50 Hz and digitized (16 bits)

Data Collection

- 8 walker users at Winston Park (84-97 years old)
- 12 older adults (80-89 years old) in the Kitchener-Waterloo area who do not use walkers

Output: Activities

- Not Touching Walker (NTW)
- \quad Standing (ST)
- Walking Forward (WF)
- Turning Left (TL)
- Turning Right (TR)
- Walking Backwards (WB)
- \quad Sitting on the Walker (SW)
- Reaching Tasks (RT)
- Up Ramp/Curb (UR/UC)
- Down Ramp/Curb (DR/DC)

Hidden Markov Model (HMM)

- Parameters
- Initial state distribution: $\pi_{\text {class }}=\operatorname{Pr}\left(y_{1}=\right.$ class $)$
- Transition probabilities: $\theta_{\text {class } \mid \text { class }}=\operatorname{Pr}\left(y_{t+1}=\right.$ class $^{\prime} \mid y_{t}=$ class $)$
- Emission probabilities: $\phi_{\text {val } \mid c l a s s}^{i}=\operatorname{Pr}\left(x_{t}^{i}=\right.$ val $\mid y_{t}=$ class $)$

$$
\text { or } N\left(\text { val } \mid \mu_{\text {class }}^{i}, \sigma_{\text {class }}^{i}\right)=\operatorname{Pr}\left(x_{t}^{i}=\operatorname{val} \mid y_{t}=\text { class }\right)
$$

- Maximum likelihood:
- Supervised: $\quad \pi^{*}, \theta^{*}, \phi^{*}=\operatorname{argmax}_{\pi, \theta, \phi} \operatorname{Pr}\left(y_{1: T}, x_{1: T} \mid \pi, \theta, \phi\right)$
- Unsupervised: $\pi^{*}, \theta^{*}, \phi^{*}=\operatorname{argmax}_{\pi, \theta, \phi} \operatorname{Pr}\left(x_{1: T} \mid \pi, \theta, \phi\right)$

Demo

Maximum Likelihood

- Supervised Learning: y 's are known
- Objective: $\operatorname{argmax}_{\pi, \theta, \phi} \operatorname{Pr}\left(y_{1 . . t}, x_{1 . . t} \mid \pi, \theta, \phi\right)$
- Derivation:
- Set derivative to 0
- Isolate parameters π, θ, ϕ
- Consider a single input x per time step
- Let $y \in\left\{c_{1}, c_{2}\right\}$ and $x \in\left\{v_{1}, v_{2}\right\}$

Multinomial emissions

- Let $\# c_{i}^{\text {start }}$ be \# times of that process starts in class c_{i}
- Let $\# c_{i}$ be \# of times that process is in class c_{i}
- Let $\#\left(c_{i}, c_{j}\right)$ be \# of times that c_{i} follows c_{j}
- Let $\#\left(v_{i}, c_{j}\right)$ be \# of times that v_{i} occurs with c_{j}
- $\operatorname{Pr}\left(y_{0 . . t}, x_{1 . . t}\right)$
$=\operatorname{Pr}\left(y_{0}\right) \prod_{i=1}^{t} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(x_{i} \mid y_{i}\right)$
$=\left(\pi_{c_{1}}\right)^{\# c_{1}^{\text {start }}}\left(1-\pi_{c_{1}}\right)^{\# c_{2}^{\text {start }}}\left(\theta_{c_{1} \mid c_{1}}\right)^{\#\left(c_{1}, c_{1}\right)}\left(1-\theta_{c_{1} \mid c_{1}}\right)^{\#\left(c_{2}, c_{1}\right)}$
$\left(\theta_{c_{1} \mid c_{2}}\right)^{\#\left(c_{1}, c_{2}\right)}\left(1-\theta_{c_{1} \mid c_{2}}\right)^{\#\left(c_{2}, c_{2}\right)}\left(\phi_{v_{1} \mid c_{1}}\right)^{\#\left(v_{1}, c_{1}\right)}\left(1-\phi_{v_{1} \mid c_{1}}\right)^{\#\left(v_{2}, c_{1}\right)}$
$\left(\phi_{v_{1} \mid c_{2}}\right)^{\#\left(v_{1}, c_{2}\right)}\left(1-\phi_{v_{1} \mid c_{2}}\right)^{\#\left(v_{2}, c_{2}\right)}$

Multinomial emissions

- $\operatorname{argmax}_{\pi, \theta, \phi} \operatorname{Pr}\left(y_{1 . . t}, x_{1 . . t} \mid \pi, \theta, \phi\right)$

$$
\Rightarrow\left\{\begin{array}{l}
\operatorname{argmax}_{\pi_{c_{1}}}\left(\pi_{c_{1}}\right)^{\# c_{1}^{s t a r t}}\left(1-\pi_{c_{1}}\right)^{\# c_{2}}{ }^{\text {start }} \\
\operatorname{argmax}_{\theta_{c_{1} \mid c_{1}}}\left(\theta_{c_{1} \mid c_{1}}\right)^{\#\left(c_{1}, c_{1}\right)}\left(1-\theta_{c_{1} \mid c_{1}}\right)^{\#\left(c_{2}, c_{1}\right)} \\
\operatorname{argmax}_{\theta_{c_{1} \mid c_{2}}}\left(\theta_{c_{1} \mid c_{2}}\right)^{\#\left(c_{1}, c_{2}\right)}\left(1-\theta_{c_{1} \mid c_{2}}\right)^{\#\left(c_{2}, c_{2}\right)} \\
\operatorname{argmax}_{\phi_{v_{1} \mid c_{1}}}\left(\phi_{v_{1} \mid c_{1}}\right)^{\#\left(v_{1}, c_{1}\right)}\left(1-\phi_{v_{1} \mid c_{1}}\right)^{\#\left(v_{2}, c_{1}\right)} \\
\operatorname{argmax}_{\phi_{v_{1} \mid c_{2}}}\left(\phi_{v_{1} \mid c_{2}}\right)^{\#\left(v_{1}, c_{2}\right)}\left(1-\phi_{v_{1} \mid c_{2}}\right)^{\#\left(v_{2}, c_{2}\right)}
\end{array}\right.
$$

Multinomial emissions

- Optimization problem:

$$
\begin{aligned}
& \max _{\pi_{c_{1}}}\left(\pi_{c_{1}}\right)^{\# c_{1}^{\text {start }}}\left(1-\pi_{c_{1}}\right)^{\# c_{2}^{\text {start }}} \\
& \quad \Longrightarrow \max _{\pi_{c_{1}}}\left(\# c_{1}^{\text {start }}\right) \log \left(\pi_{c_{1}}\right)+\left(\# c_{2}^{\text {start }}\right) \log \left(1-\pi_{c_{1}}\right)
\end{aligned}
$$

- Set derivative to 0 :

$$
\begin{aligned}
& 0=\frac{\# c_{1}^{\text {start }}}{\pi_{c_{1}}}-\frac{\# c_{2}^{\text {start }}}{1-\pi_{c_{1}}} \\
\Rightarrow & \left(1-\pi_{c_{1}}\right)\left(\# c_{1}^{\text {start }}\right)=\left(\pi_{c_{1}}\right)\left(\# c_{2}^{\text {start }}\right) \\
\Rightarrow & \pi_{c_{1}}=\frac{\# c_{1}^{\text {start }}}{\# c_{1}^{\text {start }}+\# c_{2}^{\text {start }}}
\end{aligned}
$$

Relative Frequency Counts

- Maximum likelihood solution

$$
\begin{aligned}
& \pi_{c_{1}^{\text {start }}}=\# c_{1}^{\text {start }} /\left(\# c_{1}^{\text {start }}+\# c_{2}^{\text {start }}\right) \\
& \theta_{c_{1} \mid c_{1}}=\#\left(c_{1}, c_{1}\right) /\left(\#\left(c_{1}, c_{1}\right)+\#\left(c_{2}, c_{1}\right)\right) \\
& \theta_{c_{1} \mid c_{2}}=\#\left(c_{1}, c_{2}\right) /\left(\#\left(c_{1}, c_{2}\right)+\#\left(c_{2}, c_{2}\right)\right) \\
& \phi_{v_{1} \mid c_{1}}=\#\left(v_{1}, c_{1}\right) /\left(\#\left(v_{1}, c_{1}\right)+\#\left(v_{2}, c_{1}\right)\right) \\
& \phi_{v_{1} \mid c_{2}}=\#\left(v_{1}, c_{2}\right) /\left(\#\left(v_{1}, c_{2}\right)+\#\left(v_{2}, c_{2}\right)\right)
\end{aligned}
$$

Gaussian Emissions

- Maximum likelihood solution

$$
\begin{aligned}
& \pi_{c_{1}}^{\text {start }}=\# c_{1}^{\text {start }} /\left(\# c_{1}^{\text {start }}+\# c_{2}^{\text {start }}\right) \\
& \theta_{c_{1} \mid c_{1}}=\#\left(c_{1}, c_{1}\right) /\left(\#\left(c_{1}, c_{1}\right)+\#\left(c_{2}, c_{1}\right)\right) \\
& \theta_{c_{1} \mid c_{2}}=\#\left(c_{1}, c_{2}\right) /\left(\#\left(c_{1}, c_{2}\right)+\#\left(c_{2}, c_{2}\right)\right) \\
& \mu_{c_{1}}=\frac{1}{\# c_{1}} \sum_{\left\{t \mid y_{t}=c_{1}\right\}} x_{t}, \quad \sigma_{c_{1}}^{2}=\frac{1}{\# c_{1}} \sum_{\left\{t \mid y_{t}=c_{1}\right\}}\left(x_{t}-\mu_{c_{1}}\right)^{2} \\
& \mu_{c_{2}}=\frac{1}{\# c_{2}} \sum_{\left\{t \mid y_{t}=c_{2}\right\}} x_{t}, \quad \sigma_{c_{2}}^{2}=\frac{1}{\# c_{2}} \sum_{\left\{t \mid y_{t}=c_{2}\right\}}\left(x_{t}-\mu_{c_{2}}\right)^{2}
\end{aligned}
$$

Example

Monitoring

- Suppose we observe the following sequence of features: $x_{1 . .3}=\left(v_{1}, v_{1}, v_{2}\right)$
- What is the probability of $y_{t}=c_{1}$ at each time step?
- Forward algorithm: iterate

$$
\operatorname{Pr}\left(y_{i} \mid x_{1 . i}\right) \propto \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \sum_{y_{i-1}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}\right) \operatorname{Pr}\left(y_{i-1} \mid x_{1 . i-1}\right)
$$

Example

Most likely explanation

- In activity recognition, we are not interested in estimating the activity probabilities at each time step in isolation
- Instead, we want the most likely explanation (i.e., sequence of classes) of the measurements

$$
\operatorname{argmax}_{y_{1}, \ldots, y_{t}} \operatorname{Pr}\left(y_{1 . . t} \mid x_{1 . . t}\right)
$$

- Viterbi algorithm: iterate

$$
\begin{aligned}
\max _{y_{1 . i}} & \operatorname{Pr}\left(y_{1 . . i+1} \mid x_{1 . .}\right) \propto \\
& \max _{y_{i}} \operatorname{Pr}\left(y_{i+1} \mid y_{i}\right) \operatorname{Pr}\left(x_{i} \mid y_{i}\right) \max _{y_{1 . i-1}} \operatorname{Pr}\left(y_{1 . . i} \mid x_{1 . . i-1}\right)
\end{aligned}
$$

Example

