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Gaussian Process Regression

• Idea: distribution over functions
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Bayesian Linear Regression

• Setting:   and   

• Weight space view:
– Prior: 
– Posterior: 
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Bayesian Linear Regression

• Setting:   and   

• Function space view:
– Prior: 

– Posterior: 
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Gaussian Process

• According to the function view, there is a Gaussian at 
for every .  Those Gaussians are correlated 

through .

• What is the general form of (i.e., distribution 
over functions)?

• Answer: Gaussian Process (infinite dimensional 
Gaussian distribution)
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Gaussian Process

• Distribution over functions:

• Where is the mean
and is 

the kernel covariance function
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Mean function 

• Compute the mean function as follows:

• Let 
with 

• Then  
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Kernel covariance function 

• Compute kernel covariance as follows:

•

೅ ᇲ

• In some cases we can use domain knowledge to 
specify directly.
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Examples

• Sampled functions from a Gaussian Process
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Gaussian Process Regression

• Gaussian Process Regression corresponds to 
kernelized Bayesian Linear Regression

• Bayesian Linear Regression:
– Weight space view
– Goal: (posterior over )
– Complexity: cubic in # of basis functions

• Gaussian Process Regression:
– Function space view
– Goal: (posterior over )
– Complexity: cubic in # of training points
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Recap: Bayesian Linear Regression

• Prior: 
• Likelihood: 

• Posterior: 
where  

• Prediction: 

• Complexity: inversion of is cubic in # of basis 
functions
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Gaussian Process Regression

• Prior: 
• Likelihood: 

• Posterior: 
where  

• Prediction: 

• Complexity: inversion of is cubic in # of 
training points
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Case Study: AIBO Gait Optimization
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Gait Optimization

• Problem: find best parameter setting of the gait 
controller to maximize walking speed
– Why?: Fast robots have a better chance of winning in 

robotic soccer

• Solutions:
– Stochastic hill climbing
– Gaussian Processes

• Lizotte, Wang, Bowling, Schuurmans (2007) Automatic Gait 
Optimization with Gaussian Processes, International Joint 
Conferences on Artificial Intelligence (IJCAI).
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Search Problem

• Let , be a vector of 15 parameters that 
defines a controller for gait

• Let be a mapping from controller 
parameters to gait speed

• Problem: find parameters that yield highest 
speed.

But is unknown…
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Approach

• Picture
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Approach

• Initialize 
• Repeat: 

– Select new 

࢞ᇲ∈೉
ᇲ

– Evaluate by observing speed of robot with 
parameters set to 

– Update Gaussian process:
• ࢝ࢋ࢔ and ࢝ࢋ࢔

• ିଶ ିଵ

• ଶ ିଵ
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Results
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Gaussian kernel:


