CS489/698

Lecture 11: Feb 8, 2017

Gaussian Processes

[B] Section 6.4 [M] Chap. 15 [HTF] Sec. 8.3

Gaussian Process Regression

- Idea: distribution over functions

Bayesian Linear Regression

- Setting: $f(\boldsymbol{x})=\boldsymbol{w}^{T} \phi(\boldsymbol{x})$ and $y=f(\boldsymbol{x})+\epsilon$ unknown

$$
N\left(0, \sigma^{2}\right)
$$

- Weight space view:
- Prior: $\operatorname{Pr}(\boldsymbol{w})$
- Posterior: $\operatorname{Pr}(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y})=k \operatorname{Pr}(\boldsymbol{w}) \operatorname{Pr}(\boldsymbol{y} \mid \boldsymbol{w}, \boldsymbol{X})$

Bayesian Linear Regression

- Setting: $f(\boldsymbol{x})=\boldsymbol{w}^{T} \phi(\boldsymbol{x})$ and $y=f(\boldsymbol{x})+\epsilon$

unknown

$$
N\left(0, \sigma^{2}\right)
$$

- Function space view:

Gaussian
Deterministic Gaussian

Gaussian Process

- According to the function view, there is a Gaussian at $f\left(\boldsymbol{x}_{*}\right)$ for every \boldsymbol{x}_{*}. Those Gaussians are correlated through w.
- What is the general form of $\operatorname{Pr}(f)$ (i.e., distribution over functions)?
- Answer: Gaussian Process (infinite dimensional Gaussian distribution)

Gaussian Process

- Distribution over functions:

$$
f(\boldsymbol{x}) \sim G P\left(m(\boldsymbol{x}), k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) \forall \boldsymbol{x}, \boldsymbol{x}^{\prime}
$$

- Where $m(\boldsymbol{x})=E(f(\boldsymbol{x}))$ is the mean and $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=E\left((f(\boldsymbol{x})-m(\boldsymbol{x}))\left(f\left(\boldsymbol{x}^{\prime}\right)-m\left(\boldsymbol{x}^{\prime}\right)\right)\right.$ is the kernel covariance function

Mean function $m(\boldsymbol{x})$

- Compute the mean function $m(x)$ as follows:
- Let $f(\boldsymbol{x})=\phi(\boldsymbol{x})^{T} \boldsymbol{w}$ with $\boldsymbol{w} \sim N\left(\mathbf{0}, \alpha^{-1} \boldsymbol{I}\right)$
- Then $m(\boldsymbol{x})=E(f(\boldsymbol{x}))$

$$
\begin{aligned}
& =E(\boldsymbol{w})^{T} \phi(\boldsymbol{x}) \\
& =\mathbf{0}
\end{aligned}
$$

Kernel covariance function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$

- Compute kernel covariance $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ as follows:
- $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=E\left(f(\boldsymbol{x}) f\left(\boldsymbol{x}^{\prime}\right)\right)$

$$
\begin{aligned}
& =\phi(\boldsymbol{x})^{T} E\left(\boldsymbol{w} \boldsymbol{w}^{T}\right) \phi\left(\boldsymbol{x}^{\prime}\right) \\
& =\phi(\boldsymbol{x})^{T} \frac{I}{\alpha} \phi\left(\boldsymbol{x}^{\prime}\right) \\
& =\frac{\phi(x)^{T} \phi\left(x^{\prime}\right)}{\alpha}
\end{aligned}
$$

- In some cases we can use domain knowledge to specify k directly.

Examples

- Sampled functions from a Gaussian Process

Gaussian kernel
$k\left(x, x^{\prime}\right)=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}}$

Exponential kernel
(Brownian motion)
$k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=e^{-\theta\left|x-x^{\prime}\right|}$

Gaussian Process Regression

- Gaussian Process Regression corresponds to kernelized Bayesian Linear Regression
- Bayesian Linear Regression:
- Weight space view
- Goal: $\operatorname{Pr}(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y}) \quad$ (posterior over \boldsymbol{w})
- Complexity: cubic in \# of basis functions
- Gaussian Process Regression:
- Function space view
- Goal: $\operatorname{Pr}(f \mid \boldsymbol{X}, \boldsymbol{y})$ (posterior over f)
- Complexity: cubic in \# of training points

Recap: Bayesian Linear Regression

- Prior: $\operatorname{Pr}(\boldsymbol{w})=N(\mathbf{0}, \boldsymbol{\Sigma})$
- Likelihood: $\operatorname{Pr}(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{w})=N\left(\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Phi}, \sigma^{2} \boldsymbol{I}\right)$
- Posterior: $\operatorname{Pr}(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y})=N\left(\overline{\boldsymbol{w}}, \boldsymbol{A}^{-\mathbf{1}}\right)$ where $\overline{\boldsymbol{w}}=\sigma^{-2} \boldsymbol{A}^{\mathbf{1}} \boldsymbol{\Phi} \boldsymbol{y}$ and $\boldsymbol{A}=\sigma^{-2} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{T}}+\boldsymbol{\Sigma}^{-1}$
- Prediction: $\operatorname{Pr}\left(y_{*} \mid \boldsymbol{x}_{*}, \boldsymbol{X}, \boldsymbol{y}\right)=$ $N\left(\sigma^{-2} \phi\left(\boldsymbol{x}_{*}\right)^{T} \boldsymbol{A}^{-1} \boldsymbol{\Phi} \boldsymbol{y}, \phi\left(\boldsymbol{x}_{*}\right)^{T} \boldsymbol{A}^{-1} \phi\left(\boldsymbol{x}_{*}\right)\right)$
- Complexity: inversion of \boldsymbol{A} is cubic in \# of basis functions

Gaussian Process Regression

- Prior: $\operatorname{Pr}(f(\cdot))=N(m(\cdot), k(\cdot, \cdot))$
- Likelihood: $\operatorname{Pr}(\boldsymbol{y} \mid \boldsymbol{X}, f)=N\left(f(\cdot), \sigma^{2} \boldsymbol{I}\right)$
- Posterior: $\operatorname{Pr}(f(\cdot) \mid \boldsymbol{X}, \boldsymbol{y})=N\left(\bar{f}(\cdot), k^{\prime}(\cdot, \cdot)\right)$ where $\bar{f}(\cdot)=k(\cdot, \boldsymbol{X})\left(\boldsymbol{K}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}$ and

$$
k^{\prime}(\cdot \cdot)=k(\cdot, \cdot)-k(\cdot, \boldsymbol{X})\left(\boldsymbol{K}+\sigma^{2} \boldsymbol{I}\right)^{-1} k(\boldsymbol{X}, \cdot)
$$

- Prediction: $\operatorname{Pr}\left(y_{*} \mid \boldsymbol{x}_{*}, \boldsymbol{X}, \boldsymbol{y}\right)=N\left(\bar{f}\left(\boldsymbol{x}_{*}\right), k^{\prime}\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{*}\right)\right)$
- Complexity: inversion of $\boldsymbol{K}+\sigma^{2} \boldsymbol{I}$ is cubic in \# of training points

Case Study: AIBO Gait Optimization

Gait Optimization

- Problem: find best parameter setting of the gait controller to maximize walking speed
- Why?: Fast robots have a better chance of winning in robotic soccer
- Solutions:
- Stochastic hill climbing
- Gaussian Processes
- Lizotte, Wang, Bowling, Schuurmans (2007) Automatic Gait Optimization with Gaussian Processes, International Joint Conferences on Artificial Intelligence (IJCAI).

Search Problem

- Let $\boldsymbol{x} \in \mathfrak{R}^{15}$, be a vector of 15 parameters that defines a controller for gait
- Let $f: \boldsymbol{x} \rightarrow \Re$ be a mapping from controller parameters to gait speed
- Problem: find parameters \boldsymbol{x}^{*} that yield highest speed.

$$
\boldsymbol{x}^{*} \leftarrow \operatorname{argmax}_{\boldsymbol{x}} f(\boldsymbol{x})
$$

But f is unknown...

Approach

- Picture

Approach

- Initialize $f(\cdot) \sim G P(m(\cdot), k(\cdot, \cdot))$
- Repeat:
- Select new \boldsymbol{x} :

$$
\boldsymbol{x}_{n e w} \leftarrow \operatorname{argmax}_{\boldsymbol{x}} \frac{k(\boldsymbol{x}, \boldsymbol{x})}{\max _{\boldsymbol{x}^{\prime} \in X} f\left(\boldsymbol{x}^{\prime}\right)-m(\boldsymbol{x})}
$$

- Evaluate $f\left(\boldsymbol{x}_{\text {new }}\right)$ by observing speed of robot with parameters set to $\boldsymbol{x}_{\text {new }}$
- Update Gaussian process:
- $\boldsymbol{X} \leftarrow \boldsymbol{X} \cup\left\{\boldsymbol{x}_{\text {new }}\right\}$ and $\boldsymbol{y} \leftarrow \boldsymbol{y} \cup f\left(\boldsymbol{x}_{\text {new }}\right)$
- $m(\cdot) \leftarrow k(\cdot, \boldsymbol{X})\left(\boldsymbol{K}+\sigma^{-2} \boldsymbol{I}\right)^{-1} \boldsymbol{y}$
- $k(\cdot, \cdot) \leftarrow k(\cdot, \cdot)-k(\cdot, \boldsymbol{X})\left(\boldsymbol{K}+\sigma^{2} \boldsymbol{I}\right)^{-1} k(\boldsymbol{X}, \cdot)$

Results

Gaussian kernel:

$$
k\left(x, x^{\prime}\right)=\sigma_{f}^{2} e^{-\frac{1}{2}\left(x-x^{\prime}\right)^{T} S\left(x-x^{\prime}\right)}
$$

(•) GP w/MPI
$0.281 \mathrm{~m} / \mathrm{s}$
$\sigma_{f}^{2}=0.06$
(*) GP w/MPI
$0.285 \mathrm{~m} / \mathrm{s}$
$\sigma_{f}^{2}=0.6$
(\times) H.Clmb
(o) U.Rand
$0.230 \mathrm{~m} / \mathrm{s}$

