CS489/698

Lecture 10: Feb 6, 2017

Kernel methods
[D] Chap. 11 [B] Sec. 6.1, 6.2
[M] Sec. 14.1, 14.2 [H] Chap. 9 [HTF] Chap. 6

Non-linear Models Recap

- Generalized linear models:
- Neural networks:

Kernel Methods

- Idea: use large (possibly infinite) set of fixed nonlinear basis functions
- Normally, complexity depends on number of basis functions, but by a "dual trick", complexity depends on the amount of data
- Examples:
- Gaussian Processes (next class)
- Support Vector Machines (next week)
- Kernel Perceptron
- Kernel Principal Component Analysis

Kernel Function

- Let $\phi(\boldsymbol{x})$ be a set of basis functions that map inputs x to a feature space.
- In many algorithms, this feature space only appears in the dot product $\phi(\boldsymbol{x})^{T} \phi\left(\boldsymbol{x}^{\prime}\right)$ of input pairs $\boldsymbol{x}, \boldsymbol{x}^{\prime}$.
- Define the kernel function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\phi(\boldsymbol{x})^{T} \phi\left(\boldsymbol{x}^{\prime}\right)$ to be the dot product of any pair x, x^{\prime} in feature space.
- We only need to know $\boldsymbol{k}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, not $\phi(\boldsymbol{x})$

Dual Representations

- Recall linear regression objective

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{n=1}^{N}\left[\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{n}\right)-y_{n}\right]^{2}+\frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}
$$

- Solution: set gradient to 0

$$
\begin{aligned}
\nabla E(\boldsymbol{w}) & =\sum_{n}\left(\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{n}\right)-y_{n}\right) \phi\left(\boldsymbol{x}_{n}\right)+\lambda \boldsymbol{w}=0 \\
\boldsymbol{w} & =-\frac{1}{\lambda} \sum_{n}\left(\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{\boldsymbol{n}}\right)-y_{n}\right) \phi\left(\boldsymbol{x}_{\boldsymbol{n}}\right)
\end{aligned}
$$

$\therefore \boldsymbol{w}$ is a linear combination of inputs in feature space

$$
\left\{\phi\left(\boldsymbol{x}_{n}\right) \mid 1 \leq n \leq N\right\}
$$

Dual Representations

- Substitute $\mathbf{w}=\boldsymbol{\Phi} \boldsymbol{a}$
- Where $\boldsymbol{\Phi}=\left[\phi\left(\boldsymbol{x}_{1}\right) \phi\left(\boldsymbol{x}_{2}\right) \ldots \phi\left(\boldsymbol{x}_{N}\right)\right]$

$$
\boldsymbol{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right] \text { and } a_{n}=-\frac{1}{\lambda}\left(\boldsymbol{w}^{T} \phi\left(\boldsymbol{x}_{n}\right)-y_{n}\right)
$$

- Dual objective: minimize E with respect to \boldsymbol{a}

$$
E(\boldsymbol{a})=\frac{1}{2} \boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{\Phi} \boldsymbol{a}-\boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{\Phi} \boldsymbol{y}+\frac{\boldsymbol{y}^{T} \boldsymbol{y}}{2}+\frac{\lambda}{2} \boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{\Phi}^{\boldsymbol{T}} \boldsymbol{\Phi} \boldsymbol{a}
$$

Gram Matrix

- Let $\boldsymbol{K}=\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}$ be the Gram matrix
- Substitute in objective:

$$
E(\boldsymbol{a})=\frac{1}{2} \boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{K} \boldsymbol{a}-\boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{y}+\frac{\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{y}}{2}+\frac{\lambda}{2} \boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{K} \boldsymbol{a}
$$

- Solution: set gradient to 0

$$
\begin{aligned}
\nabla E(\boldsymbol{a})=\boldsymbol{K} \boldsymbol{K} \boldsymbol{a}-\boldsymbol{K} \boldsymbol{y}+\lambda \boldsymbol{K} \boldsymbol{a} & =0 \\
\boldsymbol{K}(\boldsymbol{K}+\lambda \boldsymbol{I}) \boldsymbol{a} & =\boldsymbol{K} \boldsymbol{y} \\
\boldsymbol{a} & =(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
\end{aligned}
$$

- Prediction:

$$
y_{*}=\phi\left(\boldsymbol{x}_{*}\right)^{T} \boldsymbol{w}=\phi\left(\boldsymbol{x}_{*}\right)^{T} \boldsymbol{\Phi} \boldsymbol{a}=k\left(\boldsymbol{x}_{*}, \boldsymbol{X}\right)(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
$$

where $(\boldsymbol{X}, \boldsymbol{y})$ is the training set and $\left(\boldsymbol{x}_{*}, y_{*}\right)$ is a test instance

Dual Linear Regression

- Prediction: $y_{*}=\phi\left(\boldsymbol{x}_{*}\right)^{T} \boldsymbol{\Phi} \boldsymbol{a}$

$$
=k\left(\boldsymbol{x}_{*}, \boldsymbol{X}\right)(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
$$

- Linear regression where we find dual solution \boldsymbol{a} instead of primal solution \mathbf{w}.
- Complexity:
- Primal solution: depends on \# of basis functions
- Dual solution: depends on amount of data
- Advantage: can use very large \# of basis functions
- Just need to know kernel k

Constructing Kernels

- Two possibilities:
- Find mapping $\boldsymbol{\phi}$ to feature space and let $\boldsymbol{K}=\boldsymbol{\phi}^{\boldsymbol{T}} \boldsymbol{\phi}$
- Directly specify \boldsymbol{K}
- Can any function that takes two arguments serve as a kernel?
- No, a valid kernel must be positive semi-definite
- In other words, k must factor into the product of a transposed matrix by itself (e.g., $\boldsymbol{K}=\boldsymbol{\phi}^{\boldsymbol{T}} \boldsymbol{\phi}$)
- Or, all eigenvalues must be greater than or equal to 0 .

Example

- Let $k(x, z)=\left(x^{T} z\right)^{2}$

Constructing Kernels

- Can we construct k directly without knowing ϕ ?
- Yes, any positive semi-definite k is fine since there is a corresponding implicit feature space. But positive semi-definiteness is not always easy to verify.
- Alternative, construct kernels from other kernels using rules that preserve positive semi-definiteness

Rules to construct Kernels

- Let $k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ and $k_{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ be valid kernels
- The following kernels are also valid:

1. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=c k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \quad \forall c>0$
2. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x}) k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) f\left(\boldsymbol{x}^{\prime}\right) \quad \forall f$
3. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=q\left(k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right) q$ is polynomial with coeffs ≥ 0
4. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)$
5. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)+k_{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$
6. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k_{1}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) k_{2}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$
7. $k\left(x, x^{\prime}\right)=k_{3}\left(\phi(x), \phi\left(x^{\prime}\right)\right)$
8. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{x}^{\prime} \quad \boldsymbol{A}$ is symmetric positive semi-definite
9. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k_{a}\left(\boldsymbol{x}_{\boldsymbol{a}}, \boldsymbol{x}_{a}^{\prime}\right)+k_{b}\left(\boldsymbol{x}_{\boldsymbol{b}}, \boldsymbol{x}_{b}^{\prime}\right)$
10. $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k_{a}\left(\boldsymbol{x}_{a}, \boldsymbol{x}_{a}^{\prime}\right) k_{b}\left(\boldsymbol{x}_{b}, \boldsymbol{x}_{b}^{\prime}\right)$

$$
\text { where } \boldsymbol{x}=\binom{x_{a}}{x_{b}}
$$

Common Kernels

- Polynomial kernel: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}\right)^{M}$
- M is the degree
- Feature space: all degree M products of entries in \boldsymbol{x}
- Example: Let \boldsymbol{x} and \boldsymbol{x}^{\prime} be two images, then feature space could be all products of M pixel intensities
- More general polynomial kernel:

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+c\right)^{M} \text { with } c>0
$$

- Feature space: all products of up to M entries in \boldsymbol{x}

Common Kernels

- Gaussian Kernel: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$
- Valid Kernel because:
- Implicit feature space is infinite!

Non-vectorial Kernels

- Kernels can be defined with respect to other things than vectors such as sets, strings or graphs
- Example for strings: $k\left(d_{1}, d_{2}\right)=$ similarity between two documents (weighted sum of all non-contiguous strings that appear in both documents d_{1} and d_{2}).
- Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, Text Classification Using String Kernels, JMLR, p. 419-444, 2002.

