
CS489/698
Lecture 10: Feb 6, 2017

Kernel methods
[D] Chap. 11 [B] Sec. 6.1, 6.2

[M] Sec. 14.1, 14.2 [H] Chap. 9
[HTF] Chap. 6

CS489/698 (c) 2017 P. Poupart 1

Non-linear Models Recap

• Generalized linear models:

• Neural networks:

CS489/698 (c) 2017 P. Poupart 2

Kernel Methods

• Idea: use large (possibly infinite) set of fixed non-
linear basis functions

• Normally, complexity depends on number of basis
functions, but by a “dual trick”, complexity depends
on the amount of data

• Examples:
– Gaussian Processes (next class)
– Support Vector Machines (next week)
– Kernel Perceptron
– Kernel Principal Component Analysis

CS489/698 (c) 2017 P. Poupart 3

Kernel Function

• Let be a set of basis functions that map inputs
to a feature space.

• In many algorithms, this feature space only appears
in the dot product of input pairs .

• Define the kernel function to
be the dot product of any pair in feature space.
– We only need to know , not

CS489/698 (c) 2017 P. Poupart 4

Dual Representations

• Recall linear regression objective

• Solution: set gradient to 0

is a linear combination of inputs in feature space

CS489/698 (c) 2017 P. Poupart 5

Dual Representations

• Substitute
• Where

and

• Dual objective: minimize with respect to
ࢀ

CS489/698 (c) 2017 P. Poupart 6

Gram Matrix

• Let be the Gram matrix
• Substitute in objective:

ଵ

ଶ
ࢀ ࢀ ࢟ࢀ࢟

ଶ

ఒ

ଶ
ࢀ

• Solution: set gradient to 0

ିଵ

• Prediction:

where is the training set and is a test instance

CS489/698 (c) 2017 P. Poupart 7

Dual Linear Regression

• Prediction:

• Linear regression where we find dual solution
instead of primal solution w.

• Complexity:
– Primal solution: depends on # of basis functions
– Dual solution: depends on amount of data

• Advantage: can use very large # of basis functions
• Just need to know kernel

CS489/698 (c) 2017 P. Poupart 8

Constructing Kernels

• Two possibilities:
– Find mapping to feature space and let
– Directly specify

• Can any function that takes two arguments serve as a
kernel?

• No, a valid kernel must be positive semi-definite
– In other words, must factor into the product of a

transposed matrix by itself (e.g.,)
– Or, all eigenvalues must be greater than or equal to 0.

CS489/698 (c) 2017 P. Poupart 9

Example

• Let

CS489/698 (c) 2017 P. Poupart 10

Constructing Kernels

• Can we construct directly without knowing ?

• Yes, any positive semi-definite is fine since there is
a corresponding implicit feature space. But positive
semi-definiteness is not always easy to verify.

• Alternative, construct kernels from other kernels
using rules that preserve positive semi-definiteness

CS489/698 (c) 2017 P. Poupart 11

Rules to construct Kernels
• Let and be valid kernels
• The following kernels are also valid:

1. ᇱ
ଵ

ᇱ

2. ᇱ
ଵ

ᇱ ᇱ

3. ᇱ
ଵ

ᇱ is polynomial with coeffs 0
4. ᇱ

ଵ
ᇱ

5. ᇱ
ଵ

ᇱ
ଶ

ᇱ

6. ᇱ
ଵ

ᇱ
ଶ

ᇱ

7. ᇱ
ଷ

ᇱ

8. ᇱ ࢀ ᇱ is symmetric positive semi-definite
9. ᇱ

 ࢇ
ᇱ

 ࢈
ᇱ

10. ᇱ

ᇱ

ᇱ

CS489/698 (c) 2017 P. Poupart 12

where ೌ
್

Common Kernels

• Polynomial kernel:
– is the degree
– Feature space: all degree M products of entries in
– Example: Let and be two images, then feature space

could be all products of M pixel intensities

• More general polynomial kernel:
with

– Feature space: all products of up to M entries in

CS489/698 (c) 2017 P. Poupart 13

Common Kernels

• Gaussian Kernel:
ᇲ

మ

మ

• Valid Kernel because:

• Implicit feature space is infinite!

CS489/698 (c) 2017 P. Poupart 14

Non-vectorial Kernels

• Kernels can be defined with respect to other things
than vectors such as sets, strings or graphs

• Example for strings: similarity between
two documents (weighted sum of all non-contiguous
strings that appear in both documents and).

• Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins,
Text Classification Using String Kernels, JMLR, p.
419-444, 2002.

CS489/698 (c) 2017 P. Poupart 15

