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Lecture 10: Feb 6, 2017

Kernel methods
[D] Chap. 11 [B] Sec. 6.1, 6.2 

[M] Sec. 14.1, 14.2 [H] Chap. 9 
[HTF] Chap. 6
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Non-linear Models Recap

• Generalized linear models:

• Neural networks:
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Kernel Methods

• Idea: use large (possibly infinite) set of fixed non-
linear basis functions

• Normally, complexity depends on number of basis 
functions, but by a “dual trick”, complexity depends 
on the amount of data

• Examples: 
– Gaussian Processes (next class)
– Support Vector Machines (next week)
– Kernel Perceptron
– Kernel Principal Component Analysis
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Kernel Function

• Let be a set of basis functions that map inputs 
to a feature space.

• In many algorithms, this feature space only appears 
in the dot product of input pairs .

• Define the kernel function to 
be the dot product of any pair in feature space.
– We only need to know , not 
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Dual Representations

• Recall linear regression objective

• Solution: set gradient to 0

is a linear combination of inputs in feature space
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Dual Representations

• Substitute 
• Where 

and 

• Dual objective: minimize with respect to 
ࢀ
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Gram Matrix

• Let be the Gram matrix
• Substitute in objective:

ଵ

ଶ
ࢀ ࢀ ࢟ࢀ࢟

ଶ

ఒ

ଶ
ࢀ

• Solution: set gradient to 0

ିଵ

• Prediction: 

where is the training set and is a test instance
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Dual Linear Regression

• Prediction: 

• Linear regression where we find dual solution 
instead of primal solution w.

• Complexity:
– Primal solution: depends on # of basis functions
– Dual solution: depends on amount of data

• Advantage: can use very large # of basis functions
• Just need to know kernel 
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Constructing Kernels

• Two possibilities:
– Find mapping to feature space and let 
– Directly specify 

• Can any function that takes two arguments serve as a 
kernel?

• No, a valid kernel must be positive semi-definite
– In other words, must factor into the product of a 

transposed matrix by itself  (e.g., )
– Or, all eigenvalues must be greater than or equal to 0.
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Example

• Let 
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Constructing Kernels

• Can we construct directly without knowing ?

• Yes, any positive semi-definite is fine since there is 
a corresponding implicit feature space.  But positive 
semi-definiteness is not always easy to verify.

• Alternative, construct kernels from other kernels 
using rules that preserve positive semi-definiteness
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Rules to construct Kernels
• Let and be valid kernels
• The following kernels are also valid:

1. ᇱ
ଵ

ᇱ

2. ᇱ
ଵ

ᇱ ᇱ

3. ᇱ
ଵ

ᇱ is polynomial with coeffs 0
4. ᇱ

ଵ
ᇱ

5. ᇱ
ଵ

ᇱ
ଶ

ᇱ

6. ᇱ
ଵ

ᇱ
ଶ

ᇱ

7. ᇱ
ଷ

ᇱ

8. ᇱ ࢀ ᇱ is symmetric positive semi-definite
9. ᇱ

 ࢇ 
ᇱ

 ࢈ 
ᇱ

10. ᇱ
  

ᇱ
  

ᇱ
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Common Kernels

• Polynomial kernel: 
– is the degree
– Feature space: all degree M products of entries in 
– Example: Let and be two images, then feature space 

could be all products of M pixel intensities 

• More general polynomial kernel: 
with 

– Feature space: all products of up to M entries in 
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Common Kernels

• Gaussian Kernel:  
ᇲ

మ

మ

• Valid Kernel because:

• Implicit feature space is infinite!
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Non-vectorial Kernels

• Kernels can be defined with respect to other things 
than vectors such as sets, strings or graphs

• Example for strings: similarity between 
two documents (weighted sum of all non-contiguous 
strings that appear in both documents and ).

• Lodhi, Saunders, Shawe-Taylor, Christianini, Watkins, 
Text Classification Using String Kernels, JMLR, p. 
419-444, 2002.
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