HMM Example

Consider a simplified activity recognition problem with two classes

- $\quad c_{1} \equiv$ walking
- $c_{2} \equiv$ sitting
and two measurements (e.g., from an accelerometer)
- $\quad v_{1} \equiv h i g h$
- $v_{2} \equiv$ low

Suppose we have 100 sequences of varying lengths that are summarized by the following statistics

- $\# c_{1}^{\text {start }}=90 \quad \# c_{2}^{\text {start }}=10$
- $\#\left(c_{1}, c_{1}\right)=80,000 \quad \#\left(c_{2}, c_{1}\right)=20,000 \quad \#\left(c_{1}, c_{2}\right)=10,000 \quad \#\left(c_{2}, c_{2}\right)=90,000$
- $\#\left(v_{1}, c_{1}\right)=75,000 \quad \#\left(v_{2}, c_{1}\right)=25,000 \quad \#\left(v_{1}, c_{2}\right)=30,000 \quad \#\left(v_{2}, c_{2}\right)=70,000$

Maximum likelihood allows us to compute the following estimates for the parameters

- Initial distribution: $\quad \operatorname{Pr}\left(y_{1}\right)= \begin{cases}0.9 & y_{1}=c_{1} \\ 0.1 & y_{1}=c_{2}\end{cases}$
- Transition distribution: $\operatorname{Pr}\left(y_{t+1} \mid y_{t}\right)= \begin{cases}0.8 & y_{t+1}=c_{1}, y_{t}=c_{1} \\ 0.2 & y_{t+1}=c_{2}, y_{t}=c_{1} \\ 0.1 & y_{t+1}=c_{1}, y_{t}=c_{2} \\ 0.9 & y_{t+1}=c_{2}, y_{t}=c_{2}\end{cases}$
- Emission distribution: $\operatorname{Pr}\left(x_{t} \mid y_{t}\right)= \begin{cases}0.75 & x_{t}=v_{1}, y_{t}=c_{1} \\ 0.25 & x_{t}=v_{2}, y_{t}=c_{1} \\ 0.30 & x_{t}=v_{1}, y_{t}=c_{2} \\ 0.70 & x_{t}=v_{2}, y_{t}=c_{2}\end{cases}$

Suppose that we observe the following sequence of measurements: $v_{1}, v_{1}, v_{2}, v_{2}$.
We can estimate the probability of each class at each time step by belief monitoring

1. $\operatorname{Pr}\left(y_{1} \mid v_{1}\right) \propto \operatorname{Pr}\left(v_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)=\left\{\begin{array}{l}0.675 \\ 0.030\end{array} \propto \begin{cases}0.9574 & y_{1}=c_{1} \\ 0.0426 & y_{1}=c_{2}\end{cases}\right.$
2. $\operatorname{Pr}\left(y_{2} \mid v_{1} v_{1}\right) \propto \operatorname{Pr}\left(v_{1} \mid y_{2}\right) \sum_{y_{1}} \operatorname{Pr}\left(y_{2} \mid y_{1}\right) \operatorname{Pr}\left(y_{1} \mid v_{1}\right)=\left\{\begin{array}{l}0.5777 \\ 0.0689\end{array} \propto \begin{cases}0.8934 & y_{2}=c_{1} \\ 0.1066 & y_{2}=c_{2}\end{cases}\right.$
3. $\operatorname{Pr}\left(y_{3} \mid v_{1} v_{1} v_{2}\right) \propto \operatorname{Pr}\left(v_{2} \mid y_{3}\right) \sum_{y_{2}} \operatorname{Pr}\left(y_{3} \mid y_{2}\right) \operatorname{Pr}\left(y_{2} \mid v_{1} v_{1}\right)=\left\{\begin{array}{l}0.1813 \\ 0.1922\end{array} \propto\left\{\begin{array}{l}0.4854 \\ 0.5146 \\ y_{3}=c_{1} \\ y_{3}=c_{2}\end{array}\right.\right.$
4. $\operatorname{Pr}\left(y_{4} \mid v_{1} v_{1} v_{2} v_{2}\right) \propto \operatorname{Pr}\left(v_{2} \mid y_{4}\right) \sum_{y_{3}} \operatorname{Pr}\left(y_{4} \mid y_{3}\right) \operatorname{Pr}\left(y_{3} \mid v_{1} v_{1} v_{2}\right)=\left\{\begin{array}{l}0.1099 \\ 0.3921\end{array} \propto \begin{cases}0.2190 & y_{4}=c_{1} \\ 0.7810 & y_{4}=c_{2}\end{cases}\right.$

We can also estimate the most likely sequence of classes by the Viterbi algorithm

1. $f\left(y_{1}, y_{2}\right)=\operatorname{Pr}\left(y_{2} \mid y_{1}\right) \operatorname{Pr}\left(v_{1} \mid y_{1}\right) \operatorname{Pr}\left(y_{1}\right)= \begin{cases}0.540 & y_{1}=c_{1}, y_{2}=c_{1} \\ 0.003 & y_{1}=c_{2}, y_{2}=c_{1} \\ 0.135 & y_{1}=c_{1}, y_{2}=c_{2} \\ 0.027 & y_{1}=c_{2}, y_{2}=c_{2}\end{cases}$
$\max _{y_{1}} \operatorname{Pr}\left(y_{1}, y_{2} \mid v_{1}\right) \propto \max _{y_{1}} f\left(y_{1}, y_{2}\right)= \begin{cases}0.540 & y_{2}=c_{1} \\ 0.135 & y_{2}=c_{2}\end{cases}$
Hence if $y_{2}=c_{1}$ then $y_{1}=c_{1}$ and if $y_{2}=c_{2}$ then $y_{1}=c_{1}$
2. $f\left(y_{2}, y_{3}\right)=\operatorname{Pr}\left(y_{3} \mid y_{2}\right) \operatorname{Pr}\left(v_{1} \mid y_{2}\right) \max _{y_{1}} \operatorname{Pr}\left(y_{1}, y_{2} \mid v_{1}\right)= \begin{cases}0.3240 & y_{2}=c_{1}, y_{3}=c_{1} \\ 0.0041 & y_{2}=c_{2}, y_{3}=c_{1} \\ 0.0810 & y_{2}=c_{1}, y_{3}=c_{2} \\ 0.0365 & y_{2}=c_{2}, y_{3}=c_{2}\end{cases}$
$\max _{y_{1}, y_{2}} \operatorname{Pr}\left(y_{1}, y_{2}, y_{3} \mid v_{1}, v_{1}\right) \propto \max _{y_{2}} f\left(y_{2}, y_{3}\right)= \begin{cases}0.3240 & y_{3}=c_{1} \\ 0.0810 & y_{3}=c_{2}\end{cases}$
Hence if $y_{3}=c_{1}$ then $y_{2}=c_{1}$ and if $y_{3}=c_{2}$ then $y_{2}=c_{1}$
3. $f\left(y_{3}, y_{4}\right)=\operatorname{Pr}\left(y_{4} \mid y_{3}\right) \operatorname{Pr}\left(v_{2} \mid y_{3}\right) \max _{y_{1}, y_{2}} \operatorname{Pr}\left(y_{1}, y_{2}, y_{3} \mid v_{1}, v_{1}\right)= \begin{cases}0.0648 & y_{3}=c_{1}, y_{4}=c_{1} \\ 0.0057 & y_{3}=c_{2}, y_{4}=c_{1} \\ 0.0162 & y_{3}=c_{1}, y_{4}=c_{2} \\ 0.0510 & y_{3}=c_{2}, y_{4}=c_{2}\end{cases}$
$\max _{y_{1}, y_{2}, y_{3}} \operatorname{Pr}\left(y_{1}, y_{2}, y_{3}, y_{4} \mid v_{1}, v_{1}, v_{2}\right) \propto \max _{y_{3}} f\left(y_{3}, y_{4}\right)= \begin{cases}0.0648 & y_{4}=c_{1} \\ 0.0510 & y_{4}=c_{2}\end{cases}$
Hence if $y_{4}=c_{1}$ then $y_{3}=c_{1}$ and if $y_{4}=c_{2}$ then $y_{3}=c_{2}$
4. $f\left(y_{4}\right)=\operatorname{Pr}\left(v_{2} \mid y_{4}\right) \max _{y_{1}, y_{2}, y_{3}} \operatorname{Pr}\left(y_{1}, y_{2}, y_{3}, y_{4} \mid v_{1}, v_{1}, v_{2}\right)= \begin{cases}0.0162 & y_{4}=c_{1} \\ 0.0357 & y_{4}=c_{2}\end{cases}$
$\max _{y_{1}, y_{2}, y_{3}, y_{4}} \operatorname{Pr}\left(y_{1}, y_{2}, y_{3}, y_{4} \mid v_{1}, v_{1}, v_{2}, v_{2}\right) \propto \max _{y_{4}} f\left(y_{4}\right)=0.0357$ Hence $y_{4}=c_{2}$

By backtracking through the rules obtained at each time step, we can conclude that the most likely sequence of classes is $c_{1}, c_{1}, c_{2}, c_{2}$

