
Assignment 3: Kernel Methods

CS489/698 – Winter 2017

Out: February 6, 2017
Due: March 3 (11:59pm)

Submit an electronic copy of your assignment via LEARN. Late submissions incur a 2% penalty for every
rounded up hour past the deadline. For example, an assignment submitted 5 hours and 15 min late will receive
a penalty of ceiling(5.25) * 2% = 12%.

Be sure to include your name and student number with your assignment.

1. [20 pts] Show that the Gaussian kernel k(x,x′) = exp(−||x−x′||2/2σ2) can be expressed as the inner product
of an infinite-dimensional feature space. Hint: use the following expansion and show that the middle factor
further expands as a power series:

k(x,x′) = e−x
Tx/2σ2

ex
Tx′/σ2

e−(x
′)Tx′/2σ2

2. [30 pts] For this question, you will develop a dual formulation of the perceptron learning algorithm. Using the
perceptron learning rule

wt+1 =

{
wt + ynφ(xn) if ynwTφ(xn) ≤ 0
wt otherwise

show that the learned weight vector w can be written as a linear combination of the vectors ynφ(xn) where
yn ∈ {−1,+1}. Denote the coefficients of this linear combination by an.

(a) [15 pts] Derive a formulation of the perceptron learning rule in terms of an. Show that the feature vector
φ(x) enters only in the form of the kernel function k(x,x′) = φ(x)Tφ(x′).

(b) [15 pts] Derive a formulation of the predictive learning rule

y =

{
1 if wTφ(x) > 0
−1 otherwise

in terms of an.

3. [50 pts] Non-linear regression techniques.

Implement the following regression algorithms. A dataset will be posted on the course web page. The input and
output spaces are continuous (i.e., x ∈ <d and y ∈ <).

(a) [15 pts] Regularized generalized linear regression: perform least square regression with the penalty term
wTw. Use monomial basis functions up to degree d: {

∏
i(xi)

ni |
∑
i ni ≤ d}

(b) [15 pts] Bayesian generalized linear regression: use monomial basis function up to degree d as described
above. Assume the output noise is Gaussian with variance = 1. Start with a Gaussian prior over the weights
Pr(w) = N(0, I) with 0 mean and identity covariance matrix.

(c) [20 pts] Gaussian process regression: assume the output noise is Gaussian with variance = 1. Use the
following kernels:
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• Identity: k(x, x′) = xTx′

• Gaussian: k(x, x′) = e−||x−x
′||2/2σ2

• Polynomial: k(x, x′) = (xTx′ + 1)d where d is the degree of the polynomial

What to hand in:

• Your code for each algorithm.

• Regularized generalized linear regression:

– Graph that shows the mean squared error based on 10-fold cross validation for degrees 1, 2, 3 and 4
of the monomial basis functions.

– A discussion of the results and how the running time varies with the degree of the monomial basis
functions.

• Bayesian generalized linear regression:

– Graph that shows the mean squared error based on 10-fold cross validation for degrees 1, 2, 3 and 4
of the monomial basis functions.

– A discussion of the results and how the running time varies with the degree of the monomial basis
functions.

– A discussion of the similarities and differences between regularized generalized linear regression and
Bayesian generalized linear regression.

• Gaussian process regression:

– The mean squared error based on 10-fold cross validation for the identity kernel.
– Graph that shows the mean squared error based on 10-fold cross validation for the Gaussian kernel

when we vary σ from 1 to 6 in increments of 1.
– Graph that shows the mean squared error based on 10-fold cross validation for degrees 1, 2, 3 and 4

of the polynomial kernel.
– A discussion of the results and how the running time varies.
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