# Assignment 1: $k$-nearest neighbours and linear regression 

CS489/698 - Winter 2017

Out: January 9, 2016
Due: January 20 (11:59 pm), 2016.

Submit an electronic copy of your assignment via LEARN. Late submissions incur a $2 \%$ penalty for every rounded up hour past the deadline. For example, an assignment submitted 5 hours and 15 min late will receive a penalty of ceiling(5.25) $* 2 \%=12 \%$.

## Be sure to include your name and student number with your assignment.

1. [30 pts] Classification. Implement $k$-nearest neighbours using any programming language of your choice. Download the dataset posted on the course web page. Classify each input $x$ according to the most frequent class amongst its $k$ nearest neighbours. Break ties at random. Test the algorithms by 10 -fold cross validation.

## What to hand in:

- Your code for $k$-nearest neighbours and cross validation.
- Find the best $k$ by 10 -fold cross validation. Draw a graph that shows the accuracy as $k$ increases from 1 to 30.

2. [30 pts] Regression. Using any programming language, implement linear least square regression with the penalty term $\lambda w^{T} w$. Download the dataset posted on the course web page. The input and output spaces are continuous (i.e., $x \in \Re^{d}$ and $y \in \Re$ ).

## What to hand in:

- Your code for linear regression.
- Find the best $\lambda$ by 10 -fold cross validation. Draw a graph that shows the accuracy as $\lambda$ increases from 0 to 4 in increments of 0.1.

3. [40 pts] Theory. In class, we discussed several loss functions for linear regression. However all the loss functions that we discussed assume that the error contributed by each data point have the same importance. Consider a scenario where we would like to give more weight to some data points. Our goal is to fit the data points $\left(x_{n}, y_{n}\right)$ in proportion to their weights $r_{n}$ by minimizing the following objective:

$$
L(w, b)=\sum_{n=1}^{m} r_{n}\left(y_{n}-w x_{n}+b\right)^{2}
$$

where $w$ and $b$ are the model parameters, the training data pairs are $\left(x_{n}, y_{n}\right)$. To simplify things, feel free to consider 1D data (i.e., $x_{n}$ and $w$ are scalars).
(a) [20 pts] Derive a closed-form expression for the estimates of $w$ and $b$ that minimize the objective. Show the steps along the way, not just the final estimates.
(b) [20 pts] Show that this objective is equivalent to the negative log-likelihood for linear regression where each data point may have a different Gaussian measurement noise. What is the variance of each measurement noise in this model?

