Ensemble Learning

March 30, 2010 CS 489/698 University of Waterloo

Outline

- Ensemble Learning
 - Bagging
 - Boosting
- Reading:
 - Bishop Sect 14.2, 14.3
 - Russell & Norvig Sect 18.4

CS489/698 Lecture Slides (c) 2010 P. Poupart

2

Supervised Learning

- · So far...
 - Decision trees
 - Statistical learning
 - · Bayesian Learning
 - · Maximum a posteriori
 - · Maximum likelihood
- · Which technique should we pick?

S489/698 Lecture Slides (c) 2010 P. Poupart

3

Ensemble Learning

- Sometimes each learning technique yields a different hypothesis
- · But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

CS489/698 Lecture Slides (c) 2010 P. Poupart

4

Ensemble Learning

- · Analogies:
 - Elections combine voters' choices to pick a good candidate
 - Committees combine experts' opinions to make better decisions
- Intuitions:
 - Individuals often make mistakes, but the "majority" is less likely to make mistakes.
 - Individuals often have partial knowledge, but a committee can pool expertise to make better decisions

CS489/698 Lecture Slides (c) 2010 P. Poupart

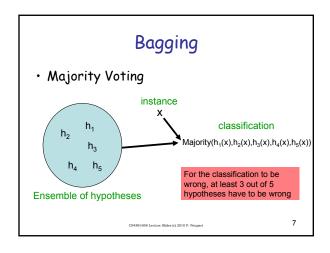
5

Ensemble Learning

- Definition: method to select and combine an ensemble of hypotheses into a (hopefully) better hypothesis
- · Can enlarge hypothesis space
 - Perceptrons
 - linear separators
 - Ensemble of perceptrons
 - $\cdot \ \mathsf{polytope}$

489/698 Lecture Slides (c) 2010 P. Poupart

6



Bagging

- Assumptions:
 - Each hi makes error with probability p
 - The hypotheses are independent
- Majority voting of n hypotheses:
 - k hypotheses make an error: $\binom{n}{k}$ p^k(1-p)^{n-k}
 - Majority makes an error: $\Sigma_{k > n/2} \binom{n}{k} p^k (1-p)^{n-k}$
 - With n=5, p=0.1 \rightarrow err(majority) < 0.01

CS489/698 Lecture Slides (c) 2010 P. Poupart

,

Weighted Majority

- In practice
 - Hypotheses rarely independent
 - Some hypotheses have less errors than others
- · Let's take a weighted majority
- · Intuition:
 - Decrease weight of correlated hypotheses
 - Increase weight of good hypotheses

'698 Lecture Slides (c) 2010 P. Poupart

9

Boosting

- Most popular ensemble technique
- · Computes a weighted majority
- · Can "boost" a "weak learner"
- Operates on a weighted training set

CS489/698 Lecture Slides (c) 2010 P. Poupart

10

Weighted Training Set

- · Learning with a weighted training set
 - Supervised learning → minimize train. error
 - Bias algorithm to learn correctly instances with high weights
- Idea: when an instance is misclassified by a hypothesis, increase its weight so that the next hypothesis is more likely to classify it correctly

CS489/698 Lecture Slides (c) 2010 P. Poursart

1

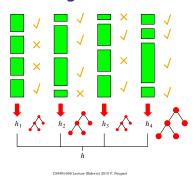
Boosting Framework

- Set all instance weights w_x to 1
- Repeat
 - h_i ← learn(dataset, weights)
 - Increase w_x of misclassified instances x
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of h_i's with weights w_i proportional to the accuracy of h_i

CS489/698 Lecture Slides (c) 2010 P. Poupart

12

Boosting Framework



13

15

17

AdaBoost (Adaptive Boosting)

• $w_i \leftarrow 1/N \ \forall_i$

w: vector of N instance weights z: vector of M hypoth. weights

- For m=1 to M do
 - h_m ← learn(dataset,w)
 - err ← 0 - For each (x_i,y_i) in dataset do
 - If $h_m(x_j) \neq y_j$ then err \leftarrow err + w_j
 - For each (x_j, y_j) in dataset do
 - If $h_m(x_j) = y_j$ then $w_j \leftarrow w_j$ err / (1-err)
 - w ← normalize(w)
 - z_m ← log [(1-err) / err]
- Return weighted-majority(h,z)

14

What can we boost?

- · Weak learner: produces hypotheses at least as good as random classifier.
- Examples:
 - Rules of thumb
 - Decision stumps (decision trees of one node)
 - Perceptrons
 - Naïve Bayes models

Boosting Paradigm

- Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Boosting is very simple to program
 - Good generalization
- · Paradigm shift
 - Don't try to learn a perfect hypothesis
 - Just learn simple rules of thumbs and boost them

16

Boosting Paradigm

- · When we already have a bunch of hypotheses, boosting provides a principled approach to combine them
- · Useful for
 - Sensor fusion
 - Combining experts

Any supervised learning task

Boosting Applications

- - Spam filtering
 - Speech recognition/natural language processing
 - Data mining
 - Etc.

18