Assignment 4: Kernels and Neural Networks

CS489/698 - Winter 2010
Out: March 18, 2010
Due: April 1, 2010

Be sure to include your name and student number with your assignment.

1. [15 pts] Show that the Gaussian kernel $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$ can be expressed as the inner product of an infinite-dimensional feature space. Hint: use the following expansion and show that the middle factor further expands as a power series:

$$
k\left(x, x^{\prime}\right)=e^{-x^{T} x / 2 \sigma^{2}} e^{x^{T} x^{\prime} / \sigma^{2}} e^{-\left(x^{\prime}\right)^{T} x^{\prime} / 2 \sigma^{2}}
$$

2. [15 pts] Consider a two-layer neural network of the form

$$
y_{k}(x, w)=\sigma\left(\sum_{j} w_{j k}^{(2)} h\left(\sum_{i} w_{i j}^{(1)} x_{i}+w_{0 j}^{(1)}\right)+w_{0 k}^{(2)}\right)
$$

in which the hidden unit nonlinear activation functions $h(\cdot)$ are given by logistic sigmoid functions of the form

$$
\sigma(a)=\frac{1}{1+e^{-a}}
$$

Show that there exists an equivalent network, which computes exactly the same function, but with hidden unit activation functions given by

$$
\tanh (a)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}
$$

Hint: first find the relation between $\sigma(a)$ and $\tanh (a)$ and then show that the paramneters of the two neural networks differ by linear transformations.
3. [$\mathbf{2 0} \mathbf{~ p t s}$] For this question, you will develop a dual formulation of the perceptron learning algorithm. Using the perceptron learning rule

$$
w^{t+1}= \begin{cases}w^{t}+y_{n} \phi\left(x_{n}\right) & \text { if } y_{n} w^{T} \phi\left(x_{n}\right) \leq 0 \\ w^{t} & \text { otherwise }\end{cases}
$$

show that the learned weight vector w can be written as a linear combination of the vectors $y_{n} \phi\left(x_{n}\right)$ where $y_{n} \in\{-1,+1\}$. Denote the coefficients of this linear combination by α_{n}.
(a) [10 pts] Derive a formulation of the perceptron learning rule in terms of α_{n}. Show that the feature vector $\phi(x)$ enters only in the form of the kernel function $k\left(x, x^{\prime}\right)=\phi(x)^{T} \phi\left(x^{\prime}\right)$.
(b) $[10 \mathrm{pts}]$ Derive a formulation of the predictive learning rule

$$
y= \begin{cases}1 & \text { if } w^{T} \phi(x)>0 \\ -1 & \text { otherwise }\end{cases}
$$

4. [50 pts] Non-linear models for classication.

Implement the following two classification algorithms. A dataset will be posted on the course web page. The input space is continuous (i.e., $X=\Re^{d}$), while the output space is categorical (i.e., $Y=\left\{C_{1}, C_{2}\right\}$).
(a) [25 pts] Kernel perceptron: using the learning rule that you derived in Question 3, learn the coefficients a_{n} for the following kernels:

- Identity: $k\left(x, x^{\prime}\right)=x^{T} x^{\prime}$
- Gaussian: $k\left(x, x^{\prime}\right)=e^{-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}}$
- Polynomial: $k\left(x, x^{\prime}\right)=\left(x^{T} x^{\prime}+1\right)^{d}$ where d is the degree of the polynomial
(b) [25 pts] Neural network: learn the weights of a two-layer neural network with a sigmoid activation function for the hidden and output nodes.

